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Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

 

Segment structure
━

 

Reliable data transfer
━

 

Flow control
━

 

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control
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Principles of Congestion ControlPrinciples of Congestion ControlPrinciples of Congestion Control

Congestion:
•

 
Informally: “too many sources 
sending data too fast for 
the network to handle”

•
 

Different from flow control!
•

 
Manifestations:
━

 

Lost packets (buffer overflows)
━

 

Delays (queueing in routers)
•

 
Important networking problem
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Causes/Costs of Congestion: Scenario 1 Causes/Costs of Congestion: Scenario 1 Causes/Costs of Congestion: Scenario 1 

•
 

Two senders, two 
receivers

•
 

One router of 
capacity C, infinite 
buffers, no loss 

•
 

No retransmission

Cost 1: queuing delays in congested routers

unlimited shared 
output link buffers

Host A λin

 

: app rate

Host B

λout
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Causes/Costs of Congestion: Scenario 2 Causes/Costs of Congestion: Scenario 2 Causes/Costs of Congestion: Scenario 2 

•
 

One router, finite buffers (pkt loss is possible now)
•

 
Sender retransmission of lost packet

•
 

During congestion 2λnet
 

= 2(λin

 

+ λretx

 

) = C

finite shared output link 
buffers

Host A λin

 

: app rate

Host B

λout

λnet

 

: network rate (original 
+ retxed pkts)
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Causes/Costs of Congestion: Scenario 2 Causes/Costs of Congestion: Scenario 2 Causes/Costs of Congestion: Scenario 2 

•
 

We call λout
 

goodput and λnet
 

throughput
━

 

Case A: pkts never lost while λnet
 

< C/2

 
(not realistic)

━

 

Case B: pkts are lost when λnet
 

is “sufficiently large,”
 

but 
timeouts are perfectly accurate (not realistic either)

━

 

Case C: same as B, but timer is not perfect (duplicate 
packets are possible)

C/2

C/2λnet

λ
ou
t

A.

C/2

C/2

B.
λnet

λ
ou
t

pkt loss started

Cost 2: retransmission of lost packets and premature timeouts 
increase network load, reduce flow’s own goodput

C/2

C/2

C.
λnet

λ
ou
t

pkt loss started
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Causes/Costs of Congestion: Scenario 3 Causes/Costs of Congestion: Scenario 3 Causes/Costs of Congestion: Scenario 3 
•

 
Multihop case
━

 

Timeout/retransmit
━

 

R2 = 50 Mbps, R1 = R3 = R4 = 100 Mbps
━

 

Flow C-A: sends 90 Mbps

flow B-D suffers 
packet loss and 

reduced goodput

finite shared output 
link buffers

Host A

Host B

Host C

Host D

R2

R1

R3

R4

green flow D-B is 
affected by “junk”

 pkts that are lost at 
router R2

Cost 3: congestion 
causes goodput 
reduction for other flows

 

Cost 3: congestion 
causes goodput 
reduction for other flows
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Approaches Towards Congestion ControlApproaches Towards Congestion ControlApproaches Towards Congestion Control

End-to-end:
•

 
No explicit

 
feedback 

from network
•

 
Congestion inferred 
by end-systems from 
observed loss/delay
━

 

Approach taken by 
TCP (relies on loss)

Network-assisted:
•

 
Routers provide 
feedback to end 
systems
━

 

Single bit indicating 
congestion (DECbit, 
TCP/IP ECN)

━

 

Two bits (ATM)
━

 

Explicit rate senders 
should send at (ATM)

Two broad approaches towards congestion control:

ATM = Asynchronous 
Transfer Mode
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Case Study: ATM ABR Congestion ControlCase Study: ATM ABR Congestion ControlCase Study: ATM ABR Congestion Control

•
 

For network-assisted 
protocols, the logic can 
be binary:
━

 

Path underloaded,
 increase rate 

━

 

Path congested, reduce 
rate

•
 

It can also be ternary
━

 

Increase, decrease, 
hold steady

━

 

ATM ABR (Available 
Bit Rate) profile

RM (resource management) 
packets (cells):

•
 

Sent by sender, 
interspersed with data cells

•
 

Bits in RM cell set by 
switches/routers
━

 

NI bit:
 

no increase in rate 
(impending congestion)

━

 

CI bit:
 

reduce rate 
(congestion in progress)

•
 

RM cells returned to sender 
by receiver, with bits intact 
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Case Study: ATM ABR Congestion ControlCase Study: ATM ABR Congestion ControlCase Study: ATM ABR Congestion Control

•
 

Additional approach is to use a two-byte ER (explicit 
rate) field in RM cell
━

 

Congested switch may lower ER value
━

 

Senders obtain the maximum supported rate on their path
•

 
Issues with network-assisted congestion control?
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Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

 

Segment structure
━

 

Reliable data transfer
━

 

Flow control
━

 

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control
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TCP Congestion ControlTCP Congestion ControlTCP Congestion Control

•
 

TCP congestion control has a variety of algorithms 
developed over the years
━

 

TCP Tahoe
 

(1988), TCP Reno
 

(1990), TCP SACK (1992)
━

 

TCP Vegas (1994), TCP New Reno (1996)
━

 

High-Speed TCP (2002), Scalable TCP (2002)
━

 

FAST TCP (2004), TCP Illinois (2006)
•

 
Many others: H-TCP, CUBIC TCP, L-TCP, TCP 
Westwood, TCP Veno (Vegas + Reno), TCP Africa

•
 

Linux: BIC TCP (2004), CUBIC TCP (2008)
•

 
Vista and later: Compound TCP (2005)
━

 

Server 2019 switched to CUBIC
•

 
Google: BBR (2016)
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TCP Congestion ControlTCP Congestion ControlTCP Congestion Control

•
 

End-to-end
 

control (no 
network assistance)

•
 

Sender limits transmission:
LastByteSent - 
LastByteAcked 

 
CongWin

• CongWin is a function of 
perceived network 
congestion

•
 

The effective window is 
the minimum of CongWin, 
flow-control window 
carried in the ACKs, and 
sender’s own buffer space

•
 

How does sender 
perceive congestion?
━

 

Loss event = timeout 
or

 
3 duplicate acks

•
 

TCP sender reduces 
rate (CongWin) after 
loss event

•
 

Three mechanisms:
━

 

Slow start 
━

 

Conservative after 
timeouts

━

 

AIMD (congestion 
avoidance)
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TCP Slow StartTCP Slow StartTCP Slow Start

•
 

When connection begins, CongWin = 1

 
MSS

━

 

Example: MSS = 500 bytes and RTT = 200 msec
━

 

Q: initial rate?
━

 

A: 20 Kbits/s
•

 
Available bandwidth may be much larger than 
MSS/RTT
━

 

Desirable to quickly ramp up to a “respectable”
 

rate
•

 
Solution: Slow Start (SS)
━

 

When a connection begins, it increases rate exponentially 
fast until first loss or receiver window is reached

━

 

Term “slow”
 

is used to distinguish this algorithm from 
earlier TCPs which directly jumped to some huge rate
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TCP Slow Start (More)TCP Slow Start (More)TCP Slow Start (More)

•
 

Let W be congestion window in 
pkts and B

 
= CongWin be the 

same in bytes (B
 

= MSS *

 
W)

•
 

Slow start
━

 

Double CongWin every RTT
•

 
Done by incrementing CongWin 
for every ACK received:
━

 

W

 
= W+1

 
per ACK 

(or B
 

= B

 
+ MSS)

•
 

Summary:
 

initial rate is slow but 
ramps up exponentially fast

Host A

one segment

R
TT

Host B

time

two segments

four segments
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Congestion AvoidanceCongestion AvoidanceCongestion Avoidance

•
 

TCP Tahoe
 

loss 
(timeout or triple dup 
ACK):
━

 

Threshold = CongWin/2

━

 

CongWin is set to 1

 

MSS
━

 

Slow start until threshold 
is reached; then move to 
linear probing

•
 

TCP Reno
 

loss:
━

 

Timeout: same as Tahoe
━

 

3 dup ACKs: CongWin is 
cut in half (method called 
fast recovery)

Three dup ACKs indicate 
that network is capable of 
delivering subsequent segments

Timeout before 3-dup ACK is 
more alarming

Fast Recovery Philosophy:

previous timeout
loss detected via triple dup ACK
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TCP Reno AIMD (Additive Increase, 
Multiplicative Decrease)

 

TCP Reno AIMD (Additive Increase, TCP Reno AIMD (Additive Increase, 
Multiplicative Decrease)Multiplicative Decrease)

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion window

Multiplicative decrease:
 

cut 
CongWin in half after fast 
retransmit (3-dup ACKs)

Additive increase:
 

increase 
CongWin by 1 MSS every 
RTT in the absence of loss 
events: probing

3-dup ACK (loss)

Peaks are different:
 

# of 
flows or RTT changes
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TCP Reno EquationsTCP Reno EquationsTCP Reno Equations

•
 

To better understand TCP, we next examine its AIMD 
equations (congestion avoidance)

•
 

General form (loss detected through 3-dup ACK):

•
 

Reasoning
━

 

For each window of size W, we get exactly W
 acknowledgments in one RTT (assuming no loss!)

━

 

This increases window size by roughly 1
 

packet per RTT
•

 
In general, many other protocols also perform actions 
on packet arrival rather than timers
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TCP Reno EquationsTCP Reno EquationsTCP Reno Equations

•
 

What is the equation in terms of B
 

 = MSS *

 
W ?

•
 

Equivalently, TCP increases B
 

by MSS

 
per RTT

•
 

What is the rate of TCP given that its window size is 
B

 
(or W)?

•
 

Since TCP sends a full window of pkts per RTT, its 
ideal rate can be written as:
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TCP Reno Sender Congestion ControlTCP Reno Sender Congestion ControlTCP Reno Sender Congestion Control

Event State TCP Sender Action Commentary
ACK receipt 
for previously 
unacked data 

Slow Start 
(SS)

CongWin += MSS, 
If (CongWin >= ssthresh) {

Set state to “Congestion

 
Avoidance”

}

Results in a doubling of 
CongWin every RTT

ACK receipt 
for previously 
unacked data

Congestion
Avoidance 
(CA) 

CongWin += MSS2 / CongWin   Additive increase, resulting 
in increase of CongWin by 
1 MSS every RTT

Loss event 
detected by 
triple duplicate 
ACK

SS or CA ssthresh = max(CongWin/2, MSS)

 
CongWin = ssthresh

 
Set state to “Congestion Avoidance”

Fast recovery, 
implementing multiplicative 
decrease

Timeout SS or CA ssthresh = max(CongWin/2, MSS)  
CongWin = MSS
Set state to “Slow Start”

Enter slow start

Duplicate 
ACK

SS or CA Increment duplicate ACK count for 
segment being acked

CongWin and Threshold 
not changed
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TCP Reno Congestion ControlTCP Reno Congestion ControlTCP Reno Congestion Control

•
 

Summary:

Congestion 
avoidance

 

Congestion 
avoidanceSlow startSlow start

Timeout

 
W

 

= 1

Triple dup ACK

 
W

 

= W/2reach 
threshold 
or triple 

dup ACK

New ACK

 
W

 

= W

 

+ 1/W

New ACK

 
W

 

= W

 

+ 1

Timeout

 
W

 

= 1
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