
1

CSCE 463/612
 Networks and Distributed Processing

 Fall 2024
 

CSCE 463/612CSCE 463/612
 Networks and Distributed ProcessingNetworks and Distributed Processing

 Fall 2024Fall 2024

Transport Layer VTransport Layer V
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

October 17, 2024October 17, 2024



2

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

 

Segment structure
━

 

Reliable data transfer
━

 

Flow control
━

 

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control



3

Principles of Congestion ControlPrinciples of Congestion ControlPrinciples of Congestion Control

Congestion:
•

 
Informally: “too many sources 
sending data too fast for 
the network to handle”

•
 

Different from flow control!
•

 
Manifestations:
━

 

Lost packets (buffer overflows)
━

 

Delays (queueing in routers)
•

 
Important networking problem



4

Causes/Costs of Congestion: Scenario 1 Causes/Costs of Congestion: Scenario 1 Causes/Costs of Congestion: Scenario 1 

•
 

Two senders, two 
receivers

•
 

One router of 
capacity C, infinite 
buffers, no loss 

•
 

No retransmission

Cost 1: queuing delays in congested routers

unlimited shared 
output link buffers

Host A λin

 

: app rate

Host B

λout



5

Causes/Costs of Congestion: Scenario 2 Causes/Costs of Congestion: Scenario 2 Causes/Costs of Congestion: Scenario 2 

•
 

One router, finite buffers (pkt loss is possible now)
•

 
Sender retransmission of lost packet

•
 

During congestion 2λnet
 

= 2(λin

 

+ λretx

 

) = C

finite shared output link 
buffers

Host A λin

 

: app rate

Host B

λout

λnet

 

: network rate (original 
+ retxed pkts)



6

Causes/Costs of Congestion: Scenario 2 Causes/Costs of Congestion: Scenario 2 Causes/Costs of Congestion: Scenario 2 

•
 

We call λout
 

goodput and λnet
 

throughput
━

 

Case A: pkts never lost while λnet
 

< C/2

 
(not realistic)

━

 

Case B: pkts are lost when λnet
 

is “sufficiently large,”
 

but 
timeouts are perfectly accurate (not realistic either)

━

 

Case C: same as B, but timer is not perfect (duplicate 
packets are possible)

C/2

C/2λnet

λ
ou
t

A.

C/2

C/2

B.
λnet

λ
ou
t

pkt loss started

Cost 2: retransmission of lost packets and premature timeouts 
increase network load, reduce flow’s own goodput

C/2

C/2

C.
λnet

λ
ou
t

pkt loss started



7

Causes/Costs of Congestion: Scenario 3 Causes/Costs of Congestion: Scenario 3 Causes/Costs of Congestion: Scenario 3 
•

 
Multihop case
━

 

Timeout/retransmit
━

 

R2 = 50 Mbps, R1 = R3 = R4 = 100 Mbps
━

 

Flow C-A: sends 90 Mbps

flow B-D suffers 
packet loss and 

reduced goodput

finite shared output 
link buffers

Host A

Host B

Host C

Host D

R2

R1

R3

R4

green flow D-B is 
affected by “junk”

 pkts that are lost at 
router R2

Cost 3: congestion 
causes goodput 
reduction for other flows

 

Cost 3: congestion 
causes goodput 
reduction for other flows



8

Approaches Towards Congestion ControlApproaches Towards Congestion ControlApproaches Towards Congestion Control

End-to-end:
•

 
No explicit

 
feedback 

from network
•

 
Congestion inferred 
by end-systems from 
observed loss/delay
━

 

Approach taken by 
TCP (relies on loss)

Network-assisted:
•

 
Routers provide 
feedback to end 
systems
━

 

Single bit indicating 
congestion (DECbit, 
TCP/IP ECN)

━

 

Two bits (ATM)
━

 

Explicit rate senders 
should send at (ATM)

Two broad approaches towards congestion control:

ATM = Asynchronous 
Transfer Mode



9

Case Study: ATM ABR Congestion ControlCase Study: ATM ABR Congestion ControlCase Study: ATM ABR Congestion Control

•
 

For network-assisted 
protocols, the logic can 
be binary:
━

 

Path underloaded,
 increase rate 

━

 

Path congested, reduce 
rate

•
 

It can also be ternary
━

 

Increase, decrease, 
hold steady

━

 

ATM ABR (Available 
Bit Rate) profile

RM (resource management) 
packets (cells):

•
 

Sent by sender, 
interspersed with data cells

•
 

Bits in RM cell set by 
switches/routers
━

 

NI bit:
 

no increase in rate 
(impending congestion)

━

 

CI bit:
 

reduce rate 
(congestion in progress)

•
 

RM cells returned to sender 
by receiver, with bits intact 



10

Case Study: ATM ABR Congestion ControlCase Study: ATM ABR Congestion ControlCase Study: ATM ABR Congestion Control

•
 

Additional approach is to use a two-byte ER (explicit 
rate) field in RM cell
━

 

Congested switch may lower ER value
━

 

Senders obtain the maximum supported rate on their path
•

 
Issues with network-assisted congestion control?



11

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

 

Segment structure
━

 

Reliable data transfer
━

 

Flow control
━

 

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control



12

TCP Congestion ControlTCP Congestion ControlTCP Congestion Control

•
 

TCP congestion control has a variety of algorithms 
developed over the years
━

 

TCP Tahoe
 

(1988), TCP Reno
 

(1990), TCP SACK (1992)
━

 

TCP Vegas (1994), TCP New Reno (1996)
━

 

High-Speed TCP (2002), Scalable TCP (2002)
━

 

FAST TCP (2004), TCP Illinois (2006)
•

 
Many others: H-TCP, CUBIC TCP, L-TCP, TCP 
Westwood, TCP Veno (Vegas + Reno), TCP Africa

•
 

Linux: BIC TCP (2004), CUBIC TCP (2008)
•

 
Vista and later: Compound TCP (2005)
━

 

Server 2019 switched to CUBIC
•

 
Google: BBR (2016)



13

TCP Congestion ControlTCP Congestion ControlTCP Congestion Control

•
 

End-to-end
 

control (no 
network assistance)

•
 

Sender limits transmission:
LastByteSent - 
LastByteAcked 

 
CongWin

• CongWin is a function of 
perceived network 
congestion

•
 

The effective window is 
the minimum of CongWin, 
flow-control window 
carried in the ACKs, and 
sender’s own buffer space

•
 

How does sender 
perceive congestion?
━

 

Loss event = timeout 
or

 
3 duplicate acks

•
 

TCP sender reduces 
rate (CongWin) after 
loss event

•
 

Three mechanisms:
━

 

Slow start 
━

 

Conservative after 
timeouts

━

 

AIMD (congestion 
avoidance)



14

TCP Slow StartTCP Slow StartTCP Slow Start

•
 

When connection begins, CongWin = 1

 
MSS

━

 

Example: MSS = 500 bytes and RTT = 200 msec
━

 

Q: initial rate?
━

 

A: 20 Kbits/s
•

 
Available bandwidth may be much larger than 
MSS/RTT
━

 

Desirable to quickly ramp up to a “respectable”
 

rate
•

 
Solution: Slow Start (SS)
━

 

When a connection begins, it increases rate exponentially 
fast until first loss or receiver window is reached

━

 

Term “slow”
 

is used to distinguish this algorithm from 
earlier TCPs which directly jumped to some huge rate



15

TCP Slow Start (More)TCP Slow Start (More)TCP Slow Start (More)

•
 

Let W be congestion window in 
pkts and B

 
= CongWin be the 

same in bytes (B
 

= MSS *

 
W)

•
 

Slow start
━

 

Double CongWin every RTT
•

 
Done by incrementing CongWin 
for every ACK received:
━

 

W

 
= W+1

 
per ACK 

(or B
 

= B

 
+ MSS)

•
 

Summary:
 

initial rate is slow but 
ramps up exponentially fast

Host A

one segment

R
TT

Host B

time

two segments

four segments



16

w
in

do
w

 W
in

 p
kt

s

RTT round

Congestion AvoidanceCongestion AvoidanceCongestion Avoidance

•
 

TCP Tahoe
 

loss 
(timeout or triple dup 
ACK):
━

 

Threshold = CongWin/2

━

 

CongWin is set to 1

 

MSS
━

 

Slow start until threshold 
is reached; then move to 
linear probing

•
 

TCP Reno
 

loss:
━

 

Timeout: same as Tahoe
━

 

3 dup ACKs: CongWin is 
cut in half (method called 
fast recovery)

Three dup ACKs indicate 
that network is capable of 
delivering subsequent segments

Timeout before 3-dup ACK is 
more alarming

Fast Recovery Philosophy:

previous timeout
loss detected via triple dup ACK



17

TCP Reno AIMD (Additive Increase, 
Multiplicative Decrease)

 

TCP Reno AIMD (Additive Increase, TCP Reno AIMD (Additive Increase, 
Multiplicative Decrease)Multiplicative Decrease)

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion window

Multiplicative decrease:
 

cut 
CongWin in half after fast 
retransmit (3-dup ACKs)

Additive increase:
 

increase 
CongWin by 1 MSS every 
RTT in the absence of loss 
events: probing

3-dup ACK (loss)

Peaks are different:
 

# of 
flows or RTT changes



18

TCP Reno EquationsTCP Reno EquationsTCP Reno Equations

•
 

To better understand TCP, we next examine its AIMD 
equations (congestion avoidance)

•
 

General form (loss detected through 3-dup ACK):

•
 

Reasoning
━

 

For each window of size W, we get exactly W
 acknowledgments in one RTT (assuming no loss!)

━

 

This increases window size by roughly 1
 

packet per RTT
•

 
In general, many other protocols also perform actions 
on packet arrival rather than timers



19

TCP Reno EquationsTCP Reno EquationsTCP Reno Equations

•
 

What is the equation in terms of B
 

 = MSS *

 
W ?

•
 

Equivalently, TCP increases B
 

by MSS

 
per RTT

•
 

What is the rate of TCP given that its window size is 
B

 
(or W)?

•
 

Since TCP sends a full window of pkts per RTT, its 
ideal rate can be written as:



20

TCP Reno Sender Congestion ControlTCP Reno Sender Congestion ControlTCP Reno Sender Congestion Control

Event State TCP Sender Action Commentary
ACK receipt 
for previously 
unacked data 

Slow Start 
(SS)

CongWin += MSS, 
If (CongWin >= ssthresh) {

Set state to “Congestion

 
Avoidance”

}

Results in a doubling of 
CongWin every RTT

ACK receipt 
for previously 
unacked data

Congestion
Avoidance 
(CA) 

CongWin += MSS2 / CongWin   Additive increase, resulting 
in increase of CongWin by 
1 MSS every RTT

Loss event 
detected by 
triple duplicate 
ACK

SS or CA ssthresh = max(CongWin/2, MSS)

 
CongWin = ssthresh

 
Set state to “Congestion Avoidance”

Fast recovery, 
implementing multiplicative 
decrease

Timeout SS or CA ssthresh = max(CongWin/2, MSS)  
CongWin = MSS
Set state to “Slow Start”

Enter slow start

Duplicate 
ACK

SS or CA Increment duplicate ACK count for 
segment being acked

CongWin and Threshold 
not changed



21

TCP Reno Congestion ControlTCP Reno Congestion ControlTCP Reno Congestion Control

•
 

Summary:

Congestion 
avoidance

 

Congestion 
avoidanceSlow startSlow start

Timeout

 
W

 

= 1

Triple dup ACK

 
W

 

= W/2reach 
threshold 
or triple 

dup ACK

New ACK

 
W

 

= W

 

+ 1/W

New ACK

 
W

 

= W

 

+ 1

Timeout

 
W

 

= 1


	CSCE 463/612�Networks and Distributed Processing�Fall 2024
	Chapter 3: Roadmap
	Principles of Congestion Control
	Causes/Costs of Congestion: Scenario 1 
	Causes/Costs of Congestion: Scenario 2 
	Causes/Costs of Congestion: Scenario 2 
	Causes/Costs of Congestion: Scenario 3 
	Approaches Towards Congestion Control
	Case Study: ATM ABR Congestion Control
	Case Study: ATM ABR Congestion Control
	Chapter 3: Roadmap
	TCP Congestion Control
	TCP Congestion Control
	TCP Slow Start
	TCP Slow Start (More)
	Congestion Avoidance
	TCP Reno AIMD (Additive Increase, Multiplicative Decrease)
	TCP Reno Equations
	TCP Reno Equations
	TCP Reno Sender Congestion Control
	TCP Reno Congestion Control

