
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2025
 

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2025Spring 2025

Practice IIIPractice III
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

April 8, 2025April 8, 2025



2

•
 

How fast is
 

homework #3 with 216K
 

keywords?
━

 

Roughly 9.1 KB/s, 38 days to parse the big file
•

 
Using all 8M unique words in large Wikipedia?
━

 

Speed 240 bytes/s, roughly 4 years to finish (using 12 cores)
•

 
Focus of computer science has always been efficiency
━

 

Quicksort vs bubble sort, hashing vs sorting, binary vs linear 
search, min-heap vs linear min()

━

 

Substring search is another example
•

 
Start with single-string search
━

 

Assume some text and a given keyword
━

 

Need to find all occurrences of keyword in text
━

 

Matches do not have to be complete words

String SearchString SearchString Search



3

•
 

Naïve method #1: use strcmp or memcmp
•

 
Naïve method #2: use strstr
━

 

Runs somewhat faster, but 
still far from optimal

•
 

Example of method #1:
━

 

Worst-case complexity?
━

 

N = length of text, M = word size, then (N-M)*M

Single StringSingle StringSingle String
while (off < bufSize - wordLen) {

if (memcmp (buf + off, word, wordLen) == 0) 
found ++; 

off ++;
}

while (off < bufSize - wordLen) {
if (memcmp (buf + off, word, wordLen) == 0) 

found ++;
off ++;

}

char *match = buf;
buf [bufSize] = 0;
while (true) {

match = strstr (match, word);
if (match == NULL)

break;
found ++;
match ++;

}

char *match = buf;
buf [bufSize] = 0;
while (true) {

match = strstr (match, word);
if (match == NULL)

break;
found ++;
match ++;

}

AA BB CC DD AA BB DD QQword
miss

step 1

AA BB CC QQ AA BB CC DD AA BB ZZ DDtext …



4

Single StringSingle StringSingle String

miss

AA BB CC DD AA BB DD QQword step 3

miss

AA BB CC DD AA BB DD QQword step 2

miss

AA BB CC DD AA BB DD QQword step 4

AA BB CC QQ AA BB CC DD AA BB ZZ DDtext …

AA BB CC QQ AA BB CC DD AA BB ZZ DDtext …

AA BB CC QQ AA BB CC DD AA BB ZZ DDtext …



5

•
 

Naïve takes 7 comparisons to move 4 bytes
━

 

Total complexity of getting past 12 bytes is 23 comparisons
•

 
Knuth-Morris-Pratt (KMP), 1977:

Single StringSingle StringSingle String

AA BB CC DD AA BB DD QQword
miss

step 1

AA BB CC DD AA BB DD QQword
miss

step 2

AA BB CC QQ AA BB CC DD AA BB ZZ DDtext …

AA BB CC QQ AA BB CC DD AA BB ZZ DDtext …



6

Single StringSingle StringSingle String

AA BB CC DD AA BB DD QQword
miss

step 4

already matched

AA BB CC DDword
miss

step 5

AA BB CC DD AA BB DD QQword
miss

step 3

AA BB CC QQ AA BB CC DD AA BB ZZ DDtext …

AA BB CC QQ AA BB CC DD AA BB ZZ DDtext …

AA BB CC QQ AA BB CC DD AA BB ZZ DDtext …



7

•
 

Total 6 steps, 15 comparisons to pass 12 bytes
•

 
How does it work?
━

 

Each character needs two lookup tables (LUTs) –
 

by how 
many bytes to move after a non-match in this position and 
where in the word to re-start on the next attempt

Single StringSingle StringSingle String

AA BB CC DD AA BB DD QQword

re-start

move 11 11 22 33 55 55 44 77

00 00 00 00 00 00 22 00

tables built offline, 
fit

 
in L1 cache



8

•
 

Boyer-Moore
 

(BM), 1977:
━

 

Uses not just distance, but also the mismatched character
•

 
Matching goes right to left, until a mismatch
━

 

Off is examined position
 

in text

•
 

After a miss, two hash tables move the word
 

forward:
━

 

Slide[dist]: based on the # of matched characters
━

 

Shift[char]: based on mismatched character text[off]

Single StringSingle StringSingle String

AA BB CC DD AA BB DD QQword
miss

AA BB CC QQ AA BB CC CC QQ BB ZZ DDtext QQ 11 22
off



9

•
 

In the example above
━

 

Mismatch distance is 0, so slide by 1 char
━

 

Mismatch char = C, so shift by 5
•

 
After moving off by 5:

•
 

In this case, mismatch occurs at text[off] = Z:
━

 

Mismatch distance = 2, slide word
 

by 8
━

 

Mismatch char = Z, shift word
 

by 6

Single StringSingle StringSingle String

AA BB CC DD AA BB DD QQword
miss

when moving 
forward, take the 
larger of the two

off

BB CC CC QQ BB ZZ DDtext QQ 11 22 33 44 55 66 77 88



10

Single StringSingle StringSingle String

AA CC BB DD QQ RR DD QQword
miss

AA BB CC QQ AA BB CC DD QQ BB ZZtext KK …

slide by 3,

 

shift by 4

AA CC BB DD QQ RR DD QQword

AA BB CC QQ AA BB CC DD QQ BB ZZtext KK …

off

when multiple D are present, 
select the rightmost 

(slide 1, shift 1)

•
 

For words that have rare letter combinations, we can 
be skipping by M each time
━

 

Best case complexity is sub-linear, i.e., N/M comparisons
•

 
Typically faster than KMP for larger M



11

•
 

Can we do better?
•

 
Notice that BM gets stuck on popular characters, while 
ideally it should skip most examined locations
━

 

E.g., “zebra”
 

incurs detailed inspection any time it hits an ‘e’
•

 
Idea: set up a hash table with 2-byte combinations
━

 

E.g., “ze”, “eb”, “br”, “ra”
 

which are much more rare
━

 

Then scan the text using an unsigned short (2-byte) pointer
•

 
Caveat: don’t know alignment of the word, may hit 
something like “_z”

 
and miss the word

━

 

Need to set up wildcard entries ?z
 

and a?
 

for all possible 
leading and trailing characters

━

 

If only full words are needed, ?
 

will be a white space

Single StringSingle StringSingle String



12

•
 

Why was homework #3 so inefficient?

•
 

Idea: do not compare current byte to all strings, only to 
those that can potentially be a match

•
 

Rabin-Karp
 

(RK), 1987
━

 

Assume M is the smallest keyword length
━

 

Compute a hash H of the next M chars from current location
━

 

Hit a hash
 

table, compare with words that tie for that hash
━

 

Speed is only based on the length of collision chains

Multiple StringsMultiple StringsMultiple Strings

ZZ BB CC QQ AA BBtext
keyword list

 
apple

 
banana

 
mango

 
zebra

 
…

looking at ‘z’, no 
need to attempt a 
match to apple, 
banana, mango

hash H



13

•
 

After hash table lookup, slide by one byte forward, 
recompute the hash of the next M chars

•
 

Notice that M-1 chars are the same in both hashes
━

 

Main twist of the algorithm is to use a rolling hash, which 
obtains Hi+1

 

from Hi

 

in O(1) time
•

 
Treating hashes as base-B integers, we have
━

 

H0

 

= str[0] * BM-1

 

+ str[1] * BM-2

 

+…+ str[M-1]
━

 

Hi+1

 

= (Hi

 

* B + str[i+M]) % BM

Multiple StringsMultiple StringsMultiple Strings

ZZ BB CC QQ AA BBtext

hash H0

hash H1

H0 = 357

H1

 

= 578

33 55 77 88 22 44

example with M = 3, B = 10



14

•
 

Larger M means fewer collisions and faster operation
•

 
With M = 3 and 216K strings, RK runs at 20MB/s
━

 

2000 times faster than the naïve method
•

 
Indexing a file with unknown keywords is slightly 
different, but the idea is similar to RK
━

 

Homework #4 explores this in more detail
•

 
Main goal is to design code that processes all 4.5B 
words in large Wikipedia in ~35 sec (135M wps)
━

 

3.7M times faster than the method in homework #3
•

 
Homework #4 has 3 checkpoints 
━

 

The first two should be done early
━

 

Checkpoint #3 is more complex, uses virtual memory

Wrap-upWrapWrap--upup


	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	String Search
	Single String
	Single String
	Single String
	Single String
	Single String
	Single String
	Single String
	Single String
	Single String
	Multiple Strings
	Multiple Strings
	Wrap-up

