CSCE 313-200

Introduction to Computer Systems
Spring 2025

Practice Il

Dmitri Loguinov
Texas A&M University

April 8, 2025

String Search

How fast is homework #3 with 216K keywords?
- Roughly 9.1 KB/s, 38 days to parse the big file

Using all 8M unique words in large Wikipedia?
- Speed 240 bytes/s, roughly 4 years to finish (using 12 cores)

Focus of computer science has always been efficiency

- Quicksort vs bubble sort, hashing vs sorting, binary vs linear
search, min-heap vs linear min()

- Substring search is another example
Start with single-string search
- Assume some text and a given keyword

- Need to find all occurrences of keyword in text
- Matches do not have to be complete words

while (off < bufSize - wordLen) {

Single String if (me:zgzqu(frf + off, word, wordLen) == 0)

off ++;

by

* Nalve method #1: use strcmp or memcmp

« Nalve method #2: use strstr char *match = buf-
buf [bufSize] = 0;
— Runs somewhat faSter’ but Whilﬁa?c:r:ui)sirstr (match, word);
still far from optimal it (natch == ULL) ’ ’
« Example of method #1: Bl
¥

- Worst-case complexity?

- N = length of text, M = word size, then (N-M)*M

mtABCEABCDABZD
l l lmiss
word | A|B CEA B|D|Q

Single String

text | A CIQABICIDA/IB|Z|D

Single String

 Nalve takes 7 comparisons to move 4 bytes
- Total complexity of getting past 12 bytes is 23 comparisons

* Knuth-Morris-Pratt (KMP), 1977

MtABCBABCDABZD
l l l miss
word | A|B CEA B|D| Q step 1

Single String

text TA/B|CIQ|A

word step4 MBI D A |B[D[Q

already matched

Single String

« Total 6 steps, 15 comparisons to pass 12 bytes

* How does it work?

- Each character needs two lookup tables (LUTs) — by how
many bytes to move after a non-match in this position and
where in the word to re-start on the next attempt

word |A|B|C|D|A|B|D|Q

move | 1111213155]4|7]| |tables built offline,

> .y
oostart nnnnnnn\ | fitin L1 cache

Single String

* Boyer-Moore (BM), 1977

- Uses not just distance, but also the mismatched character

« Matching goes right to left, until a mismatch
- Off is examined position in text

off

text | A

B

C

Q

A

B

CQBZDQ12

word | A

C

D

A

« After a miss, two hash tables move the word forward:
- Slide[dist]: based on the # of matched characters
- Shift[char]: based on mismatched character text[off]

Single String

* In the example above
- Mismatch distance is 0, so slide by 1 char when moving
_ _ forward, take the
- Mismatch char = C, so shift by 5

larger of the two
 After moving off by 5:
off

tet |B|CEf /sl plal1][2][3]4]5]6]|7]8

miss
A 4

word [a]5 J¥o[aXo]a

 |n this case, mismatch occurs at text[off] = Z:

- Mismatch distance = 2, slide word by 8
- Mismatch char = Z, shift word by 6

Single String

text [A|B|IC|Q|A

Bl Z|K

when multiple D are present,
select the rightmost
(slide 1, shift 1)

— slide by 3, shift by 4

 For words that have rare letter combinations, we can
be skipping by M each time

- Best case complexity is sub-linear, i.e., N/M comparisons

« Typically faster than KMP for larger M 10

Single String

Can we do better?

Notice that BM gets stuck on popular characters, while
ideally it should skip most examined locations
- E.g., “zebra” incurs detailed inspection any time it hits an ‘e’

|dea: set up a hash table with 2-byte combinations
- E.g., “ze”, “eb”, “br”, “ra” which are much more rare
- Then scan the text using an unsigned short (2-byte) pointer

Caveat: don’'t know alignment of the word, may hit
something like “* z" and miss the word

- Need to set up wildcard entries ?z and a? for all possible
leading and trailing characters

- If only full words are needed, ? will be a white space

11

Multiple Strings

* Why was homework #3 so inefficient?
l keyword list

apple looking at ‘Z’, no
ext [Z|B|C|Q|A|B| bamane _— PO
— _ mango ’

e banana, mango
hash H zebra

» |dea: do not compare current byte to all strings, only to
those that can potentially be a match

« Rabin-Karp (RK), 1987
- Assume M is the smallest keyword length
- Compute a hash H of the next M chars from current location
- Hit a hash table, compare with words that tie for that hash

- Speed is only based on the length of collision chains
12

MUlti le Strin s example with M =3, B =10 —

 After hash table lookup, slide by one byte forward,
recompute the hash of the next M chars

text | Z|B|C|Q|A|B 3/5(7]18|2|4
) has;:H0 J k HO=357 J
has;;H1 H, =V578

* Notice that M-1 chars are the same in both hashes
- Main twist of the algorithm is to use a rolling hash, which
obtains H,,, from H, in O(1) time
* Treating hashes as base-B integers, we have
- H, = str[0] * BM-1 + str[1] * BM-2+...+ str[M-1]
- H,, = (H * B + str[i+M]) % BV

13

Wrap-up

« Larger M means fewer collisions and faster operation
« With M =3 and 216K strings, RK runs at 20MB/s

- 2000 times faster than the naive method

 Indexing a file with unknown keywords is slightly
different, but the idea is similar to RK
- Homework #4 explores this in more detail

« Main goal is to design code that processes all 4.5B
words in large Wikipedia in ~35 sec (135M wps)

- 3.7M times faster than the method in homework #3

« Homework #4 has 3 checkpoints
- The first two should be done early
- Checkpoint #3 is more complex, uses virtual memory 14

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	String Search
	Single String
	Single String
	Single String
	Single String
	Single String
	Single String
	Single String
	Single String
	Single String
	Multiple Strings
	Multiple Strings
	Wrap-up

