
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2025

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2025Spring 2025

Final NotesFinal Notes
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

April 22, 2025April 22, 2025

2

•

Tested Rabin-Karp performance on enwiki-all.txt
━

FILE_FLAG_NO_BUFFERING, B = 2 MB, 50 slots
━

8-core Skylake-X server w/RAID-50 @ 4 GB/s

Homework #3Homework #3Homework #3

11

22

33

11.1911.19

11.2711.27

12.0912.09

2.7 GB/s2.7 GB/s

2.7 GB/s2.7 GB/s

2.5 GB/s2.5 GB/s

319,017,279319,017,279

319,017,279319,017,279

319,017,279319,017,279

27 MB/s27 MB/s

40 MB/s40 MB/s

47 MB/s47 MB/s

TimeTime SpeedSpeed FoundFound SpeedSpeed

RefRef 7.507.50 4.0 GB/s4.0 GB/s 319,017,279319,017,279 125 MB/s125 MB/s

keywords-B keywords-D

3,374,677,7353,374,677,735

FoundFound

3,374,677,7353,374,677,735

3,374,677,7353,374,677,735

3,374,677,7353,374,677,735

44 14.1314.13 2.1 GB/s2.1 GB/s 319,016,884319,016,884 50 MB/s50 MB/s -920,294,583-920,294,583

55 17.2817.28 1.8 GB/s1.8 GB/s 319,017,279319,017,279 28 MB/s28 MB/s //

66 23.0923.09 1.3 GB/s1.3 GB/s 319,017,279319,017,279 27 MB/s27 MB/s 1,045,494,2831,045,494,283

3

•

Write code for an
interlocked multiply

 that does not use
mutexes (lock-free)
━

Multiple threads might
 be calling this function
 at the same time

•

Idea: grab the target,
 multiply locally,

 then try to swap back
into shared space
━

Main caveat is another thread might have changed the target
between our read and write

InterlockedMultiplyInterlockedMultiplyInterlockedMultiply

// standard functions in Windows
LONG __cdecl InterlockedExchange(

__inout LONG volatile *Target,
__in LONG Value

);
PVOID __cdecl InterlockedExchangePointer(

__inout PVOID volatile *Target,
__in PVOID Value

);
LONG __cdecl InterlockedCompareExchange(

__inout LONG volatile *Destination,
__in LONG Exchange,
__in LONG Comparand

);
PVOID __cdecl
InterlockedCompareExchangePointer(

__inout PVOID volatile *Destination,
__in PVOID Exchange,
__in PVOID Comparand

);

// standard functions in Windows
LONG __cdecl InterlockedExchange(

__inout LONG volatile *Target,
__in LONG Value

);
PVOID __cdecl InterlockedExchangePointer(

__inout PVOID volatile *Target,
__in PVOID Value

);
LONG __cdecl InterlockedCompareExchange(

__inout LONG volatile *Destination,
__in LONG Exchange,
__in LONG Comparand

);
PVOID __cdecl
InterlockedCompareExchangePointer(

__inout PVOID volatile *Destination,
__in PVOID Exchange,
__in PVOID Comparand

);

// new function
LONG __cdecl InterlockedMultiply(

__inout LONG volatile *Target,
__in LONG Value

);

// new function
LONG __cdecl InterlockedMultiply(

__inout LONG volatile *Target,
__in LONG Value

);

4

•

Chapters 9-10 (scheduling), 14 (networking) were not
covered in this class

•

Some of this material discussed in chapters 2-3
━

Ready, blocked, running, suspended process states
━

Dispatcher admitting and swapping processes
•

Main algorithms of chapter 9:
━

First-come, first-served (FCFS):

same as FIFO, no
preemption (i.e., each process executes to completion)

━

Round-robin (RR):

assign fixed time slice to each process,
preempt after the slice, run the next process in line

━

Weighted RR (WRR):

similar to RR, but assign weights to
processes based on their type, then set slice time
proportional to weights

SchedulingSchedulingScheduling

5

•

Algorithms (cont’d)
━

Strict priority:

multiple queues for different priority classes,
serve class i only when all higher-priority queues are empty

━

Shortest process next (SPN):

run process with the shortest
estimated duration of execution D, no preemption

━

Shortest remaining time (SRT):

preemptive version of SPN
━

Highest response ratio next (HRRN):

response ratio is
computed as w / D, where w is the current wait time

•

Main issue:

difficult to estimate D ahead of time
•

Feedback policy:

gradually penalize long processes

━

Process starts at highest priority, but after fixed intervals of
 CPU time, its priority drops by one class

━

Eventually, all long processes are in the idle class

SchedulingSchedulingScheduling

6

•

In user space, process scheduling isn’t typically
feasible or useful since the OS does it better

•

However, many other areas involve similar concepts
━

Amazon gets millions of requests per second, in which order
to serve them to minimize response time?

━

Airport gate assignment to minimize wait time, transfer delay
•

Chapter 10 deals with multi-CPU scheduling
━

More complex issue related to RAM/cache locality
━

Chapter also covers real-time scheduling

to guarantee hard
upper bounds on slice duration

•

Even more general is distributed system scheduling
━

Jobs running on multiple hosts in parallel

SchedulingSchedulingScheduling more in CSCE 410

7

•

Networks use sockets

to interface with applications
━

Kernel APIs to open connections, transfer data
•

Programming sockets is fairly easy, the interesting
aspect are the underlying protocols
━

HTTP, DNS, SMTP, FTP, POP3, P2P: application layer
━

TCP/UDP: transport layer
━

IP: network layer
━

Ethernet, 802.11 wireless: data-link layer
•

Homework similar to this class, multi-threaded C++
━

STL is allowed, programming should be simpler than here
━

CSCE

315 isn’t needed, although listed as a prereq

NetworkingNetworkingNetworking more in CSCE 463

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Homework #3
	InterlockedMultiply
	Scheduling
	Scheduling
	Scheduling
	Networking

