CSCE 313-200

Introduction to Computer Systems
Spring 2025

Final Notes

Dmitri Loguinov
Texas A&M University

April 22, 2025

Homework #3

« Tested Rabin-Karp performance on enwiki-all.txt
- FILE FLAG_NO BUFFERING, B = 2 MB, 50 slots
- 8-core Skylake-X server w/RAID-50 @ 4 GB/s

keywords-B keywords-D
_Tme | Speed | Found || Speed || Found |

1 11.19 2.7 GB/s 319,017,279 27 MB/s 3,374,677,735

2 11.27 2.7 GB/s 319,017,279 40 MB/s 3,374,677,735

3 12.09 2.5 GB/s 319,017,279 47 MB/s 3,374,677,735

4 14.13 2.1 GB/s 319,016,884 50 MB/s -920,294,583

5 17.28 1.8 GB/s 319,017,279 28 MB/s /

6 23.09 1.3 GB/s 319,017,279 27 MB/s 1,045,494,283
Ref | 7.50 4.0 GB/s 319,017,279 125 MB/s 3,374,677,735

// new function

L] -
InterlockedMultiply |t sas

__1in LONG Value
);
* Write code for an S
. . // standard functions iIn Windows
Inter'IOCked mUIt|p|y LONG _ cdecl InterlockedExchange(
__inout LONG volatile *Target,
that does not use ,—" LoNe value
mutexes (lock-free) P et pteriokedescramgponntar
- Multiple threads might o o el
pe calling this function | "ttt ot e
at the same time in Lo cxchame,
)
* Idea: grab the target, PVOID _cdecl _
- . InterlockedCompareExchangePointer(
multiply locally. " FIOI etange, T
then try to swap back ,—'" FYoID Comparand

Into shared space

- Main caveat is another thread might have changed the target

between our read and write 3

Scheduling

e Chapters 9-10 (scheduling), 14 (networking) were not
covered In this class

« Some of this material discussed in chapters 2-3
- Ready, blocked, running, suspended process states
- Dispatcher admitting and swapping processes

« Main algorithms of chapter 9:

- First-come, first-served (FCFS): same as FIFO, no
preemption (i.e., each process executes to completion)

- Round-robin (RR): assign fixed time slice to each process,
preempt after the slice, run the next process in line

- Weighted RR (WRR): similarto RR, but assign weights to
processes based on their type, then set slice time
proportional to weights 4

Scheduling

 Algorithms (cont’d)

Strict priority: multiple queues for different priority classes,
serve class i only when all higher-priority queues are empty

Shortest process next (SPN): run process with the shortest
estimated duration of execution D, no preemption

Shortest remaining time (SRT): preemptive version of SPN

Highest response ratio next (HRRN): response ratio is
computed as w / D, where w is the current wait time

 Main issue: difficult to estimate D ahead of time

* Feedback policy: gradually penalize long processes

Process starts at highest priority, but after fixed intervals of
CPU time, its priority drops by one class

Eventually, all long processes are in the idle class

Schedulin more in CSCE 410

In user space, process scheduling isn’t typically
feasible or useful since the OS does it better

However, many other areas involve similar concepts

- Amazon gets millions of requests per second, in which order
to serve them to minimize response time?

- Airport gate assignment to minimize wait time, transfer delay

Chapter 10 deals with multi-CPU scheduling

- More complex issue related to RAM/cache locality

- Chapter also covers real-time scheduling to guarantee hard
upper bounds on slice duration

Even more general is distributed system scheduling
- Jobs running on multiple hosts in parallel

Networkin more in CSCE 463

* Networks use sockets to interface with applications
- Kernel APls to open connections, transfer data

* Programming sockets is fairly easy, the interesting
aspect are the underlying protocols
- HTTP, DNS, SMTP, FTP, POP3, P2P: application layer
- TCP/UDP: transport layer
- |IP: network layer
- Ethernet, 802.11 wireless: data-link layer

 Homework similar to this class, multi-threaded C++
- STL is allowed, programming should be simpler than here
- CSCE 315 isn’t needed, although listed as a prereq

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Homework #3
	InterlockedMultiply
	Scheduling
	Scheduling
	Scheduling
	Networking

