
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2025
 

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2025Spring 2025

Memory IIIMemory III
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

April 17, 2025April 17, 2025



2

•
 

Why are lookup tables useful?
━

 

Allow verification of set membership in 1 cache access
•

 
How to initialize?
━

 

E.g., need to set up 
LUT to verify that 
character belongs to 
set {+, -, =, /, *}

•
 

When bool maps to 1 byte, can use it instead of char
━

 

Keep in mind though that BOOL is 4 bytes
•

 
Make sure to test code on various input and buf size
━

 

Debugging: elimination of crashes/incorrect output
━

 

Testing: discovery of input configurations that expose 
previously unseen problems

Homework #4Homework #4Homework #4

char LUT [256];
memset (LUT, false, 256);
const char special[] = “+-=/*”;
for (int i = 0; i < strlen(special); i++)

LUT [special [i]] = true;

char LUT [256];
memset (LUT, false, 256);
const char special[] = “+-=/*”;
for (int i = 0; i < strlen(special); i++)

LUT [special [i]] = true;



3

Chapter 7: RoadmapChapter 7: RoadmapChapter 7: Roadmap

7.1 Requirements
7.2 Partitioning
7.3 Paging
7.4 Segmentation
7.5 Security
8.1 Hardware virtual memory
8.2 OS software



4

•
 

Process crash is usually good news
━

 

Attach debugger, examine location of crash…
•

 
Except when product has shipped to customers
━

 

Users do stuff with code that makes it crash
━

 

Developer is unable to replicate bug locally, what’s next?
•

 
Idea: catch faults with

 SEH (Structured 
Exception Handling)
━

 

Create a crash dump, 
send it to main server, 
then probably restart

Memory DumpsMemory DumpsMemory Dumps



5

•
 

Instead of dumping entire RAM contents, Windows 
allows much smaller files called MiniDumps
━

 

Can be customized during exception handling to vary in size 
from a few KB to a few MB

•
 

MiniDumps can be loaded into Visual Studio
━

 

Shows the exact location of crash, call stack, certain 
variables (even if crashed in release mode)

•
 

Example: 
━

 

Important application that must work 24/7, years in a row
━

 

When it crashes, saves internal data and dump, restarts
━

 

Debugging is done offline from a collection of minidumps
•

 
See MiniDumpWriteDump on MSDN

Memory DumpsMemory DumpsMemory Dumps



6

Chapter 7: RoadmapChapter 7: RoadmapChapter 7: Roadmap

7.1 Requirements
7.2 Partitioning
7.3 Paging
7.4 Segmentation
7.5 Security
8.1 Hardware virtual memory
8.2 OS software



7

•
 

Example 1:

Buffer Overflow AttacksBuffer Overflow AttacksBuffer Overflow Attacks

•
 

Example 2:
int CheckPassword (HANDLE user) {

char correctHash [16];
char userHash [16];

GetPassHash (user, correctHash);
// remote desktop hashes password
// and sends the hash to server
Network.Read (userHash);
if (!strcmp (correctHash, userHash))

return MATCH;
else

return BOGUS;
}

int CheckPassword (HANDLE user) {
char correctHash [16];
char userHash [16];

GetPassHash (user, correctHash);
// remote desktop hashes password
// and sends the hash to server
Network.Read (userHash);
if (!strcmp (correctHash, userHash))

return MATCH;
else

return BOGUS;
}

overflow of 
userHash 
rewrites 

correctHash

void HandleServerRequest (void) {
char request [256];

Network.Read (request);
...

}

void HandleServerRequest (void) {
char request [256];

Network.Read (request);
...

}

long 
overflow, 
contains 

virus code

execution 
continues 
from PC, 
virus runs

request

ret addr
…

PC
codecorrectHash

ret addr
…

userHash

stack grows 
backwards



8

•
 

Modern OS usually 
puts a guard page

 between data, code, 
and stack

Buffer Overflow AttacksBuffer Overflow AttacksBuffer Overflow Attacks

•
 

Example 3:

•
 

Modern OS marks data 
and stack pages as non-

 executable (DEP)

void HandleServerRequest (void) {
char request [256];

Network.Read (request);
...

}

void HandleServerRequest (void) {
char request [256];

Network.Read (request);
...

}

request

ret addr

rewrites return 
address to 

jump back to 
execute virus

codecode

datadata

stackstack

Guard pages (reserved, 
but not committed) 

generate page faults
virus

ret -500



9

•
 

Example 4:

Buffer Overflow AttacksBuffer Overflow AttacksBuffer Overflow Attacks

•
 

Example 5:
void HandleServerRequest (void) {

char request [256];

Network.Read (request);
...

}

void HandleServerRequest (void) {
char request [256];

Network.Read (request);
...

}

request

ret addr

rewrites return 
address to jump 
to specific kernel 

function that 
gives elevated 

privileges

garbage

ret NTdll.A

NTdll.A: admin user logged inNTdll.A: admin user logged in

NTdll.B: change admin passwordNTdll.B: change admin password

NTdll.C: wipe C:\NTdll.C: wipe C:\

void HandleServerRequest (void) {
char *ptr = new char [50];
char request [256];

Network.Read (request);
strcpy (ptr, “hello world”);

}

void HandleServerRequest (void) {
char *ptr = new char [50];
char request [256];

Network.Read (request);
strcpy (ptr, “hello world”);

}

request

ret addr
ptr

garbage

ret addr
hijacked ptr

admin password in RAMadmin password in RAM

kernel space

more in 
CSCE 465



10

•
 

OpenSSL is a library that encrypts/decrypts traffic
━

 

Commonly used in HTTPS, SSH, secure IMAP/SMTP
•

 
Heartbeat

 
extension introduced in 2011

━

 

OpenSSL periodically sends a request that is echoed back 
to verify the connection is alive

•
 

Request message format:

•
 

Response is supposed 
to echo the buffer
━

 

Implementation 

Heartbleed BugHeartbleed BugHeartbleed Bug

headerheader lenlen bufferbuffer

len bytes

size = Network.GetNextPacketSize();
char *packet = new char [size];
Network.Read (packet);
len = ExtractLenField (packet);
Network.Send (packet, len+sizeof(header)+sizeof(short));

size = Network.GetNextPacketSize();
char *packet = new char [size];
Network.Read (packet);
len = ExtractLenField (packet);
Network.Send (packet, len+sizeof(header)+sizeof(short));



11

Chapter 7: RoadmapChapter 7: RoadmapChapter 7: Roadmap

7.1 Requirements
7.2 Partitioning
7.3 Paging
7.4 Segmentation
7.5 Security
8.1 Hardware virtual memory
8.2 OS software



12

•
 

The OS has to make two main decisions when 
managing virtual memory and swapping
━

 

Which page to bring back to RAM (fetch policy)
━

 

Which page to offload to disk (replacement policy)
•

 
Similar concepts may be useful in user-mode 
programs (e.g., object caching, browser prefetch)

•
 

Fetch policy
━

 

Demand paging: bring page only on access (Windows)
━

 

Prepaging: OS attempts to guess future demand, bring 
those pages in memory ahead of the request

•
 

Replacement policy
━

 

FIFO: treats all pages as circular buffer, evicts the next one

Managing Virtual MemoryManaging Virtual MemoryManaging Virtual Memory



13

•
 

Replacement policy (cont’d)
━

 

LRU: evicts the page that has not been used the longest
━

 

Optimal: evicts the page that won’t be used the longest 
(only used in simulations for comparison purposes)

•
 

How to implement LRU?
━

 

Can’t tag each page with an access timestamp (updating 
timestamps would incur huge overhead)

━

 

Can’t organize all pages into a linked list either (moving 
items to the front of the list on access is expensive)

•
 

Idea: replace LRU with an approximation algorithm
━

 

Assume a set of pages 0, …, N-1 that the OS manages
━

 

Associate a bit B (e.g., in the TLB) with each page
━

 

CPU sets the bit to 1 upon each read/write access

Managing Virtual MemoryManaging Virtual MemoryManaging Virtual Memory



14

•
 

Upon page fault that needs more space:
━

 

OS scans from current position CP in [0, N-1] forward 
━

 

If next page has B = 1, flag is reset to 0 and scan continues
━

 

If next page has B = 0, OS stops and evicts that page
•

 
This policy is called CLOCK
━

 

Next page evicted?
•

 
Quality of algorithm

 measured by number 
of hard page faults (PF)
━

 

FIFO 2x worse than 
optimal in PF

━

 

CLOCK better than 
FIFO, but not as good as LRU

Managing Virtual MemoryManaging Virtual MemoryManaging Virtual Memory

CP

evict CP

evict

CP

B=1

B=1

B=1B=0

B=1

B=0

B=1B=0

0
1

2
34

5

6
7

0

0
1

1

1

0

0

0



15

•
 

Should pages that were read be replaced at the 
same rate as those that have been written to?
━

 

Probably more expensive to evict a modified page
•

 
Idea: set up an extra bit W for each page
━

 

CPU modifies them on access, CLOCK first evicts eligible 
pages with W = 0; if none left, then those with W = 1

•
 

CLOCK is quicker than LRU even in user mode
•

 
Examples where CLOCK might be useful:
━

 

Web crawler keeps a list of recently seen URLs
━

 

Search engine caches answers to popular queries
━

 

Homework #4: 50% of all hash table lookups refer to 1,270 
words (20% to just 36 words), possible ways to speed up?

Managing Virtual MemoryManaging Virtual MemoryManaging Virtual Memory


	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Homework #4
	Chapter 7: Roadmap
	Memory Dumps
	Memory Dumps
	Chapter 7: Roadmap
	Buffer Overflow Attacks
	Buffer Overflow Attacks
	Buffer Overflow Attacks
	Heartbleed Bug
	Chapter 7: Roadmap
	Managing Virtual Memory
	Managing Virtual Memory
	Managing Virtual Memory
	Managing Virtual Memory

