
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2025
 

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2025Spring 2025

Memory IIMemory II
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

April 15, 2025April 15, 2025



2

Chapter 7: RoadmapChapter 7: RoadmapChapter 7: Roadmap

7.1 Requirements
7.2 Partitioning
7.3 Paging
7.4 Segmentation
7.5 Security



3

•
 

Paging allows the OS to allocate non-contiguous 
chunks of space to application requests
━

 

Hardware finds the page in RAM by transparently
 mapping from logical to physical addresses

•
 

Logical address consists of two parts
━

 

Page number
━

 

Offset within that page
•

 
Example: 32 bit address, 4 KB pages

PagingPagingPaging

P1P1
P1P1

P2P2

P2P2

RAM

0x330x33 0x5670x567

12 bits20 bits

offsetlogical page 
number

char *ptr = 0x335670x33567=



4

•
 

Conversion of page numbers is done using the TLB 
(Translation Lookaside Buffer):

•
 

Each process owns a page table controlled
 

by OS

PagingPagingPaging

0x330x33 0x5670x567
offsetlogical page 

number

char *ptr =

physical page 
number

TLB

0x453
0x621

P1P1
P1P1

P2P2

P2P2

offset in physical page



5

•
 

Example: write 5000 bytes to array ptr[]

•
 

Ptr + i = 0x33567-0x33FFF
━

 

i = 0-2712 (2713 iterations)
━

 

Physical address range
 0x453567-0x453FFF

•
 

Ptr + i = 0x34000-0x348EE
━

 

i = 2713-4999 (2287 iterations)
━

 

Physical address range 0x621000-0x6218EE

PagingPagingPaging

0x330x33 0x5670x567
offsetlogical page 

number

TLB

0x453
0x621

offset in page
char *ptr = 0x33567;

for (int i = 0; i < 5000; i++)
ptr [i] = i;

char *ptr = 0x33567;

for (int i = 0; i < 5000; i++)
ptr [i] = i;



6

•
 

To avoid doubling RAM latency on random access, 
TLB is kept in dedicated cache memory
━

 

CPU performs a
 

lookup before sending address to RAM
•

 
Within a given page, no control of address validity
━

 

However, if a process goes far enough to hit next page, the 
TLB must have an entry for that page with correct permissions

━

 

If not, a page fault is thrown and the process is killed
•

 
These

 
concepts

 
allow

 
allocation of pages beyond 

physical RAM, swapping to disk, loading to new addr
•

 
Example: computer

 
with 8 GB of RAM

━

 

Process requests 7 GB, but all other resident software and 
kernel occupy 2.5 GB

PagingPagingPaging



7

•
 

Rarely used
 

pages are
 

swapped to disk
━

 

Special pagefile
 

provides space for this operation
━

 

Usually, pagefile.sys is twice the size of RAM
•

 
Memory classification
━

 

Non-pageable memory:
 

special types of pages that cannot be 
swapped to disk (e.g., parts of OS, locked pages, AWE 
segments, large-page allocations)

━

 

Commit set:
 

all pageable memory of the process (i.e., 
allocated in the page file)

━

 

Working
 

set: touched (accessed) pages in RAM
━

 

Private working set:
 

a subset of the working set (e.g., heap-
 allocated) that is not shared with other processes

•
 

The
 

last three can be seen in Task Manager

PagingPagingPaging



8

•
 

Access to page outside working set causes a page fault
•

 
Types of page faults
━

 

Hard:
 

requires the page to be read from disk
━

 

Soft:
 

can be resolved with remapping (e.g., pages exists in 
working set of another process or first-time access)

━

 

Violation:
 

access outside virtual space of this process or using 
incompatible permissions (e.g., writing to read-only page)

•
 

Hard/soft faults are handled transparently by OS
•

 
Example: allocate 1 GB of memory

•
 

Commit size, working set size, and private set size?

PagingPagingPaging

char *buf = (char *) VirtualAlloc (NULL, 1 << 30, MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);char *buf = (char *) VirtualAlloc (NULL, 1 << 30, MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);



9

•
 

Examine Task Manager:

•
 

Commit size is 1 GB as expected, but none of that 
memory has been allocated in physical RAM yet
━

 

OS doesn’t know which pages we’ll need and in what order
━

 

Conserves physical RAM as much as possible
•

 
Write something into each page:

PagingPagingPaging

memset (buf, 0x55, 1 << 30);memset (buf, 0x55, 1 << 30);

paged pool contains kernel objects 
(e.g., handles)

 

suitable for paging

both working sets change 260K soft page faults



10

•
 

Suppose we intend to dynamically expand the region of 
allocated memory
━

 

Similar to HeapReAlloc 
━

 

But
 

don’t want to copy 
data over to the new 
area each time

•
 

Would like to ask the kernel to map 
the continuation of the previous 
buffer to some additional physical pages:

Working with BuffersWorking with BuffersWorking with Buffers

// allocation of initial 128 KB succeeds
int size = 1 << 17;
char *buf = (char *) VirtualAlloc (NULL, size, MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);
// attempt to add 16 MB to this buffer may fail
char *result = (char *) VirtualAlloc (buf + size, 1 << 24, 

MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);

// allocation of initial 128 KB succeeds
int size = 1 << 17;
char *buf = (char *) VirtualAlloc (NULL, size, MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);
// attempt to add 16 MB to this buffer may fail
char *result = (char *) VirtualAlloc (buf + size, 1 << 24, 

MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);

128 KB128 KB
16 MB 
extra

 

16 MB 
extra

1 GB 
extra

 

1 GB 
extra

128 KB128 KB
16 MB 
extra

 

16 MB 
extra

128 KB128 KB



11

heap1

heap2

virtual space

•
 

The problem is that the virtual space beyond buf + size 
might have already been assigned
━

 

Allocation in this case fails
•

 
Idea: reserve

 
a huge amount

 of virtual space so that the heap
 can’t use it

•
 

Reserved memory is not mapped to 
pagefile until

 
explicitly committed

━

 

Reservation simply makes sure this address 
space is not used in other allocation requests

━

 

Max
 

reservation is 128
 

TB

Working with BuffersWorking with BuffersWorking with Buffers

128 KB128 KB

reserve 1 TBreserve 1 TB



12

•
 

Can now commit memory in our reserved space

•
 

Memory may be decommitted as needed

Working with BuffersWorking with BuffersWorking with Buffers

heap1

heap2

// reserve 1 TB
char *bufMain = (char *) VirtualAlloc (NULL, (uint64) 1<<40,

MEM_RESERVE, PAGE_READWRITE);
// allocate 128 KB
int size0 = 1 << 17;
char *buf0 = (char *) VirtualAlloc (bufMain, size0,

MEM_COMMIT, PAGE_READWRITE);
// now add 16 MB to this buffer
int size1 = 1 << 24; 
char *buf1 = (char *) VirtualAlloc (buf0 + size0, size1, 

MEM_COMMIT, PAGE_READWRITE);
// now add 1 GB
int size2 = 1 << 30;
char *buf2 = (char *) VirtualAlloc (buf1 + size1, size2, 

MEM_COMMIT, PAGE_READWRITE);

// reserve 1 TB
char *bufMain = (char *) VirtualAlloc (NULL, (uint64) 1<<40,

MEM_RESERVE, PAGE_READWRITE);
// allocate 128 KB
int size0 = 1 << 17;
char *buf0 = (char *) VirtualAlloc (bufMain, size0,

MEM_COMMIT, PAGE_READWRITE);
// now add 16 MB to this buffer
int size1 = 1 << 24; 
char *buf1 = (char *) VirtualAlloc (buf0 + size0, size1, 

MEM_COMMIT, PAGE_READWRITE);
// now add 1 GB
int size2 = 1 << 30;
char *buf2 = (char *) VirtualAlloc (buf1 + size1, size2, 

MEM_COMMIT, PAGE_READWRITE);

128 KB128 KB
16 MB16 MB

1 GB1 GB

// decommit 4KB from the middle of committed space
char *result = (char*) VirtualFree (buf1, 1 << 12, MEM_DECOMMIT);
// decommit 4KB from the middle of committed space
char *result = (char*) VirtualFree (buf1, 1 << 12, MEM_DECOMMIT);



13

•
 

Design self-resizing Q 
that keeps data contiguous and never has to memcpy
━

 

Code below does not handle errors, nor does it compute how 
much to expand or shrink by

Queue ExampleQueue ExampleQueue Example

Q::Q () {
reserveSize = (uint64) 1<<40;
char *bufMain = (char *) VirtualAlloc (NULL, reserveSize,

MEM_RESERVE, PAGE_READWRITE);
head = tail = (Item*) (next = last = bufMain);

}

void Q::push (Item x) {
// overflow of current commit section?
if (tail + sizeof(x) > next) {

// add some commit space in front of the tail
VirtualAlloc (next, expandSize, MEM_COMMIT, PAGE_READWRITE);
next += expandSize;

}

*tail++ = item;
}

Q::Q () {
reserveSize = (uint64) 1<<40;
char *bufMain = (char *) VirtualAlloc (NULL, reserveSize,

MEM_RESERVE, PAGE_READWRITE);
head = tail = (Item*) (next = last = bufMain);

}

void Q::push (Item x) {
// overflow of current commit section?
if (tail + sizeof(x) > next) {

// add some commit space in front of the tail
VirtualAlloc (next, expandSize, MEM_COMMIT, PAGE_READWRITE);
next += expandSize;

}

*tail++ = item;
}

reserve space

head tail

queue

commit space

last next

class Q {
char *next, *last;
char *bufMain;
Item *head, *tail;

};

class Q {
char *next, *last;
char *bufMain;
Item *head, *tail;

};



14

•
 

Shrink the committed region during pop

•
 

Problem #1: cannot commit/decommit too fast
━

 

Keep expandSize
 

and shrinkSize around 1 MB
•

 
Problem #2: queue eventually overflows when 
reserveSize is exceeded
━

 

If 128
 

TB of virtual space is not enough, memcpy or linked lists 
of buffers cannot be avoided

Queue ExampleQueue ExampleQueue Example

Item Q::pop (void) {
if (head > last + shrinkSize) {

// decommit old memory behind the head
VirtualFree (last, shrinkSize, MEM_DECOMMIT);
last += shrinkSize;

}

return *head++;
}

Item Q::pop (void) {
if (head > last + shrinkSize) {

// decommit old memory behind the head
VirtualFree (last, shrinkSize, MEM_DECOMMIT);
last += shrinkSize;

}

return *head++;
}

head tail

queue

commit space

last next



15

•
 

Assume there exists some complex data processing 
library whose APIs only work with contiguous buffers
━

 

Can the library be hacked to work with shadow buffers?
•

 
If so, what if some records do not fit in shadow buffer?
━

 

Recall that shadow buffers must be at least the size of the 
longest record (e.g., word) in the file

•
 

Some files may have extremely long records
━

 

E.g., each record in a graph contains a node ID and a list of its 
neighbors; for 300M neighbors, 2.4 GB per record

•
 

Worse yet, what if individual records do not fit in RAM?
━

 

E.g., search engine index contains a keyword hash and a list 
of pages where the keyword appears; for a popular keyword 
found in 5B pages, this requires 40 GB

Disk I/O ExampleDisk I/O ExampleDisk I/O Example single-threaded application that 
reads a file larger than RAM



16

•
 

Suppose the library is a streaming
 

data processor
━

 

Operates on data only sequentially and going forward
━

 

Never returns by more than X bytes, where X is small
•

 
Goal: use virtual memory to create an illusion of a 
continuous file in RAM for this library

•
 

Idea: let the library run into page faults
━

 

Which we catch, commit the next chunk of virtual memory, 
read the next file block into it, and return control to the API

━

 

Blocks of memory that are 2 buffers behind are decommitted 
assuming buffer size is no smaller than X

•
 

Performance (AMD Phenom II):
 

page-fault
 

rate is 
~900K/sec

Disk I/O ExampleDisk I/O ExampleDisk I/O Example



17

commit space

bufi bufi+1
before 
page 
fault

•
 

What’s a good
 reserve size?

━

 

Length of file
•

 
This is how 
memory-mapped files

 
work

━

 

Slightly more general as they allow random access
━

 

Read small buffer surrounding the page fault
━

 

Decommit old pages using LRU or some other technique
━

 

See CreateFileMapping and MapViewOfFile 
•

 
Problem: this method can only do single-buffering
━

 

Stalls processing while the next buffer is being read
━

 

Only solution is to read ahead into other RAM locations, 
then memcpy into bufi+2

 

during page faults

Disk I/O ExampleDisk I/O ExampleDisk I/O Example page 
fault

commit space

bufi+1 bufi+2after



18

bufi bufi+1
before 
page 
fault

•
 

Using AWE (Address Windowing Extensions)
━

 

Six physical buffers allocated by disk thread, into which it 
reads the file, wrapping back to B0

 

after B5

━

 

Two green buffers are mapped to virtual addresses currently 
being processed by the library; B2

 

-B5

 

are used for read-ahead
━

 

On page fault, the oldest buffer B0

 

is unmapped, the next 
buffer B2

 

is mapped where the page fault occurred

Disk I/O ExampleDisk I/O ExampleDisk I/O Example

page 
fault

B0 B1 B2 B3 B4 B5

bufi+2bufi+1after

MapUserPhysicalPages()



19

•
 

Writing-to-buffer benchmark
━

 

1) No remapping or page-fault processing

━

 

2) Reserve virtual memory, catch page faults, commit new 
chunks of size 1 MB, decommit old chunks

━

 

3) Reserve physical memory (AWE),
 

catch page faults, remap 
chunks of size 1MB, unmap old chunks

Disk I/O ExampleDisk I/O ExampleDisk I/O Example

char *buf = VirtualAlloc (NULL, 1e9, MEM_COMMIT|MEM_RESERVE, ...);char *buf = VirtualAlloc (NULL, 1e9, MEM_COMMIT|MEM_RESERVE, ...);

char *buf = VirtualAlloc (NULL, 1e9, MEM_RESERVE, ...);
__try {

writeToPtr (buf, 1e9);
}
__except ( ... ) {

}

char *buf = VirtualAlloc (NULL, 1e9, MEM_RESERVE, ...);
__try {

writeToPtr (buf, 1e9);
}
__except ( ... ) {

}



20

•
 

Two versions of writeToPtr():

•
 

Benchmark results:

Disk I/O ExampleDisk I/O ExampleDisk I/O Example

writeToPtrA (char *buf, int size) {
for (int i=0; i < size; i++)

buf[i] = 55;
}

writeToPtrA (char *buf, int size) {
for (int i=0; i < size; i++)

buf[i] = 55;
}

writeToPtrB (char *buf, int size) {
memset (buf, 55, size);

}

writeToPtrB (char *buf, int size) {
memset (buf, 55, size);

}

1) None1) None looploop 1 GB1 GB 245,493245,493 3.4 sec3.4 sec

2) Commit2) Commit looploop 5.3 MB5.3 MB 245,327245,327 3.2 sec3.2 sec

3) Physical3) Physical looploop 5.3 MB5.3 MB 1,3611,361 3.1 sec3.1 sec

mappingmapping writeToPtrwriteToPtrMappingMapping writeToPtrwriteToPtr Working setWorking set Page faultsPage faults TimeTime

memsetmemset 343 ms343 mssame

memsetmemset 499 ms499 mssame

memsetmemset 156 ms156 mssame


	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Chapter 7: Roadmap
	Paging
	Paging
	Paging
	Paging
	Paging
	Paging
	Paging
	Working with Buffers
	Working with Buffers
	Working with Buffers
	Queue Example
	Queue Example
	Disk I/O Example
	Disk I/O Example
	Disk I/O Example
	Disk I/O Example
	Disk I/O Example
	Disk I/O Example

