CSCE 313-200

Introduction to Computer Systems
Spring 2025

File System

Dmitri Loguinov
Texas A&M University

March 18, 2025

Chapter 11: Roadmap

11.1 I/O devices Part V

11.2 1/O function
11.3 OS design issues

11.4 1/O buffering
11.5 Disk scheduling
11.6 RAID

11.7 Disk cache
11.8-11.10 Unix, Linux;Windows

1/0 Devices Example: AMD Opteron

L3 cache
* |/O usually refers to memory
physical devices conroler
— Such as disk, network | HyperTransport ;
card, printer, keyboard H
« Almost all components Northbridge
- Fast I/O
In the system do |I/O Southbridgs o

- Except RAM & CPU

AGP

 Transfer of data Slow /0 RAID
between devices and AT
RAM thru DMA PPC(I:-IX
- Direct Memory Access VGA

allows device to talk to COM/LPT
RAM without CPU Floppy

H Keyboard/mouse ~100 bytes/s
/O Devices ol
Floppy 70 KB/s
» How fast is I/O compared =2V I e
5 Ethernet 10 Mbps
to RAM speed USB 1.0 1.5 MB/s
- Usually slow, but it depends... Fast Ethernet 100 Mbps
« How to measure speed? _USB20 O MB/s
Gigabit Ethernet 1 Gbps
its/sec :
SSD drive 550 MB/s
- KB/s, MB/s, GB/s refer USB 3.0 600 MB/s
to bytes/sec 10G Ethernet 10 Gbps
« Use a notation with DDRé'667 il ot 2‘3’3
_ . 100G Ethernet 100 Gbps
< = 1000 bits/bytes
DDR4-3200 RAM 90 GB/s
L2 cache (8 core) 500 GB/s
L1 cache (8 core) 1.5 TB/s

I/O Devices

 OS also allows certain IPC to be modeled as
communication with an abstract |/O device
- Example: inter-process pipes, mailslots, network sockets
- This explains why ReadFile is so universal

« Our main focus here is on file |/O, but similar
principles apply to other types of devices
- Just reading files is simple; however, achieving decent
speed and parallelizing computation is more challenging
« Before solving this problem, we start with a general
background on files and APls

- Homework #3 requires multi-CPU searching of Wikipedia for
user-specified substrings

Background on Files

Just like RAM, a file is a sequence of bytes
Supports 3 main operations: read, write, and seek

File pointer specifies the current position within the file
- Read/write operations proceed from that location forward

Example: test.txt written in notepad: This is a text file.
Second line.

- Byte contents give by hex viewer (e.g., HxD)

54 68 69 73 20 69 73 20 61 20 74 65 78 74 20 66 This is a text T
69 6C 65 2E OD OA 53 65 63 6F 6E 64 20 6C 69 6E ile.._Second lin
65 2E e.

What is the ASCII table?
- Why is there OxD and OxA in the file?

Background on Files

 Two modes of file 1/0: text and binary
- Must be requested when you open the file

* Binary means disk contents are an exact copy of the
RAM buffer that is written and vice versa

« Text means there is some library (wrapper) between
the application and OS that applies certain translation
before your program sees the data

- For fopen/fprintf, this involves \r\n = \n, terminating the read
at Ctrl-Z markers (ASCII code 26), and certain multi-byte to
wide char mapping based on the locale

* Note: text files can be always read in binary mode,
while the opposite is not true

Background on Files This is a text file.
Second line.

« Example: binary mode reads the file as is:

54 68 69 73 20 69 73 20 61 20 74 65 78 74 20 66
69 6C 65 2E OD OA 53 65 63 6F 6E 64 20 6C 69 6E

65 2E

- while text mode removes \r

54 68 69 73 20 69 73 20 61 20 74 65 78 74 20 66
69 6C 65 2E OA 53 65 63 6F 6E 64 20 6C 69 6E 65

2E

 If the file is tweaked before it reaches your program,

lots of confusing things may happen
- E.g., file size 100,050 bytes, but your buffer gets only 99,800

« Since text-mode processing does usually unwanted
things to the file and is much slower than binary mode,
it is not recommended (see later for benchmarks)

8

Background on Files

Number representation can be ASCII or native
- ASCII is human-readable form (e.g., printf (“%d”, x))
- Native is identical to how numbers are stored in RAM

Example: 44 33 22 11 | hative version

32 38 37 34 35 34 30 32 30

\—\

decimal ASCII version of x, i.e., string “287454020”

ASCI| output depends on how the numbers are written
(e.g., decimal, hex) and the separator between them

- Conversion to/from ASCII is usually slow

- Format inefficient in terms of storage

APls that read raw buffers are native
- Those that attempt to read individual variables are ASCIl ¢

int X = 0x11223344;

This is a text file.

Background on Files Second line.

54 68 69 73 20 69 73 20 61 20 74 65 78 74 20 66
69 6C 65 2E OD OA 53 65 63 6F 6E 64 20 6C 69 6E

* Suppose we read an [®*
iInteger natively from the beginning of this file

int x;
ReadFile (&x, sizeof(int));

- What is the value of x?
. . char buf[] = “This”; Int X = 0x73696854 ;
- Equivalent versions - int x = *(int*) buf;

* How to write contents of some class natively to disk?
- |f it has no pointers, then it’s trivial

class MyClass {

double a;: 6F 12 83 CO CA 21 09 40 55 00 00 OO0 OO0 OO OO 0O

uint64 b; — — A _

) ~
¥; mc.a mc.b
MyClass mc;

mc.a = 3.1415;

me.b = 0X55: Notepad shows: ol fAE!@U

WriteFile (.., &mc, sizeof(MyClass), ..);

10

Background on Files

 How to store pointers, e.g., a linked list or binary tree?

class LinkedListElem { class TreeElem {

int val; int val;

LinkedListElem *next; TreeElem *left, *right;
}; };

« Data structure must first be converted to an array
- Hierarchical structure must be flattened

int valArray = new int [LinkedList.size()]; class TreeElem2 {
_ _ int val;
//_trayerse the list, copy into valArray int left, right: // offsets
WriteFile (.., valArray, i
sizeof(int) * LinkedList.size(), ..); ¥
TreeElem2 *arr = new
TreeElem2 [tree.size(Q)];

11

Background on Files gﬂﬁ.!n*l

 In fact, trees stored as arrays in RAM are often much
faster than pointer-based trees
- Main drawback: difficult to deal with fragmentation

* Further compaction: 2 bits to store # of children
- Suppose 00 = none, 01 = left, 10 = right, 11 = both

val = 55 val = 22 val = 77 val = 14 val = 65 val = 90

bits = 3 bits = 1 bits = 3 bits = 0 bits = 0 bits = 0

« Conversion from random-access (RAM) structures to
sequential arrays is called serialization
- Similar to serial transmission over COM ports or networks

12

Background on Files prograr{ buffer
memcpy

: OS buffer

» Asking the kernel for chunk of data VA

- How large should the chunk be?

* Clearly not too small, otherwise
many kernel-mode transitions, which are costly

« Some wrapper libraries (FILE and STL streams) have
yet another buffer to avoid kernel-mode switching

- Also needed if they perform

text-mode pre-processing prograrp buffer
 OS buffering can be disabled library buffer
- Disk driver directly DMAs data into 1
your program'’s buffer OS buffer

- Caveat: buffer size must be a
multiple of sector size (512 bytes)

HANDLE WINAPI CreateFile(
__1n LPCTSTR MIpFileName,

APl _in DWORD dwDesiredAccess,
E; _in DWORD dwShareMode,
—— NULL // security
_in DWORD dwCreationDisposition,
__1in DWORD dwFlagsAndAttributes,

NULL // template

* CreateFile is the most):

flexible and high-performance method of doing I/O
- Treats the memory as a sequence of bytes
- Operates in binary mode and gives you the native
representation of RAM data structures
 Read MSDN about access (read, write, both), sharing,
and disposition (e.g., open existing, create new)

« The flag field sets the attributes (e.g., hidden,
encrypted, read-only, archived, system)

- Also can be used to disable OS buffering
(FILE_FLAG _NO_ BUFFERING) or enable overlapped
operation (FILE_FLAG_OVERLAPPED)

14

char buf [BUF_SIZE];
DWORD bytes;

Pls // read a whole chunk

—— iIT (ReadFile (hFile, buf, BUF_SIZE,
&bytes, NULL) == 0) {
if (GetLastError () = ERROR_HANDLE EOF) {
// handle error
exit (-1);

 Some functions take LSS
two DWORDs instead |3 """

true;

. else 1Tt (bytes < BUF_SIZE)
()f one Lj|r]t(311 reachedEof = true;
printf (“Obtained %d bytes, EOF = %d\n”,
- How to convert? bytes, reachedEof);

// combining DWORDs into uint64 DWORD low = GetFllesisgﬁgsthE EFfle’
DWORD high, low = GetFileSize (h, &high); gh):
uint64 size = ((uint64)high << 32) + low; DWORD WINAPI SetFilePointer(

o . i _1in HANDLE hFile,
/{ spllttlng a uinté4 into DWORDs " in LONG IDistanceToMove,
high = size >> 325 __1nout_opt PLONG IpDistanceToMoveHigh,
low = size & ((DWORD) —1); ~in DWORD dwMoveMethod);

* Overlapped I/O allows multiple outstanding requests

OVERLAPPED ol ;
memset (&ol, 0, sizeof (OVERLAPPED));

ol _.hEvent = CreateEvent (NULL, false, false, NULL); Note: each pending

ReadFile (hFile, buf, len, NULL, &ol); —
// if error == ERROR_10_PENDING, continue request must have
WaitForSingleObject (ol.hEvent, INFINITE); its own struct ol

GetOverlappedResult (hFile, &ol, &bytesRead, false);

15

Pls

FILE *fopen (const char *filename,

size_t fread (void *buffer, size_ t size,

const char *mode);

size_t count, FILE *stream);

 The FILE stream is the classical C-style library
- Portable to Unix and most other OSes

char buf [BUF_SIZE];

// open for reading in binary mode
FILE *f = fopen (“test.txt”, “rb”);
if (F == NULL) {
printf (“Error %d opening file\n”,
errno);
exit (-1);
by
// read up to one full buffer
// native representation
int bytesRead = fread (buf, 1, BUF_SIZE, T);
fclose (T);

int a = 5;
double b

// open for writing In binary mode
FILE *f = fopen (“test.txt”, “wb™);
// ASCII representation

fprintf (f, “a = %d, b = %f\n”, a, b);
fclose ();

10;

FILE *f = fopen (“test.txt”,
// seek to the end
_Tseeki64 (f, 0, SEEK_END);
// get current position
uint64 fileSize = _ftelli64(f);
// return to beginning
_fseeki64 (f, 0, SEEK _SET);

“rb”)

printf (“file size %llu\n”, fileSize);

int a;
double b;
// ASCI1I1 decoding of numbers
int ret = fscanf (f, “%d %f’, &a, &b);
if (ret == 0 || ret == EOF)
printf (“Hit error or EOF\n”);
else
printf (“Obtained %d, %f\n”, a, b);

// %s gets one word and NULL terminates it
// note: potential buffer overflow

fscant (f, “%s”, buf);

// recommended to specify buf length
fscant (f, “%32s”, buf);

Pls

e |f an entire line is needed,

a faster alternative to
fscanf is fgets()

STL streams are similar

ifstream ifs;

// binary mode open
ifs.open (filename, 10s::binary);

while (ifs) {

// not EOF?

// native read

ifs.read (buf, BUF_SIZE);

printf (“Read %d bytes\n”,
ifs.gcount());

printf (“Position in file %d\n”,

ifs.tellg(Q));

by

// now try ASCII read

int x;

ifs >> x; // attempts to read an int
string s;

ifs >> s; // reads the next word
// read one line up to some delimiter
getline (ifs, s, “\n”);

char buf [BUF_SIZE];
FILE *f = fopen (““test.txt”,

while (1feof (F)) {
// read one line at a time
if (fgets (buf, BUF_SIZE,) == NULL)
break; // EOF or error
printf (“Line “%s” has %d bytes\n”,
buf, strlen(buf));

“rb”):

by
fclose (F);

* Q: using Windows APIs,
how to print contents of
a text file?

// assume fTile i1s small and fits iIn RAM

// allocate the buffer

char *buf = new char [fileSize + 1];
ReadFile (..., buf, fileSize, &bytes, ...);

// TODO: error checks

buf[bytes] = NULL;
printf (“%s\n”, buf);

17

Performance

« Dual RAID controllers, each with 12 disks in RAID-5

- Speed given in MB/s,

CPU utilization = Text mode Binary mode | CPU

fraction of 16 cores | Debug | Release | Debug | Release
ifs >> s 1.8 12 1.8 13 10%
fscanf (f, “%s”, buf) 6 19 7.5 19 9%
fgets (buf, BUF_SIZE, f) 26 50 39 79 7%
ifs.read w/32MB buffer 360 10%
fread w/32MB buffer 90 144 503 650 9%
ReadFile w/32MB buffer 982 11%
ReadFile + no OS buffering 1923 10%

e Modern PCle 5.0 m.2 drives in RAID

- Up to 60 GB/s

18

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Chapter 11: Roadmap
	I/O Devices
	I/O Devices
	I/O Devices
	Background on Files
	Background on Files
	Background on Files
	Background on Files
	Background on Files
	Background on Files
	Background on Files
	Background on Files
	APIs
	APIs
	APIs
	APIs
	Performance

