
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2025

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2025Spring 2025

File SystemFile System
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

March 18, 2025March 18, 2025

2

Chapter 11: RoadmapChapter 11: RoadmapChapter 11: Roadmap

11.1 I/O devices
11.2 I/O function
11.3 OS design issues
11.4 I/O buffering
11.5 Disk scheduling
11.6 RAID
11.7 Disk cache
11.8-11.10 Unix, Linux, Windows

Part V
Chapter 11:

I/OChapter 11:

I/O
Chapter 12:

FilesChapter 12:

Files

3

•

I/O usually refers to
physical devices
━

Such as disk, network
card, printer, keyboard

•

Almost all components
 in the system do

I/O

━

Except RAM & CPU
•

Transfer of data
between devices and
RAM thru DMA
━

Direct Memory Access
allows device to talk to
RAM without CPU

I/O DevicesI/O DevicesI/O Devices
CoresCores L3 cacheL3 cache

RAMRAM

Slow I/O

USB

SATA

PCI-X

PCI

VGA

COM/LPT

Floppy

Slow I/O

USB

SATA

PCI-X

PCI

VGA

COM/LPT

Floppy

NorthbridgeNorthbridge

SouthbridgeSouthbridge
Fast I/O

PCI-E

AGP

RAID

Fast I/O

PCI-E

AGP

RAID

memory
controller

memory
controller

HyperTransportHyperTransport

Example: AMD Opteron

4

•

How fast is I/O compared
to RAM speed?
━

Usually slow, but it depends…
•

How to measure speed?
━

Kbps, Mbps, Gbps

refer to
bits/sec

━

KB/s, MB/s, GB/s refer
to bytes/sec

•

Use a notation with
K = 1000 bits/bytes

I/O DevicesI/O DevicesI/O Devices Keyboard/mouseKeyboard/mouse ~100 bytes/s~100 bytes/s
ModemModem 53 Kbps53 Kbps

FloppyFloppy 70 KB/s70 KB/s

CD-ROM 1xCD-ROM 1x 150 KB/s150 KB/s
EthernetEthernet 10 Mbps10 Mbps

Fast EthernetFast Ethernet 100 Mbps100 Mbps

Gigabit EthernetGigabit Ethernet 1 Gbps1 Gbps

Hitachi 2TB driveHitachi 2TB drive 150 MB/s150 MB/s

SSD driveSSD drive 550

MB/s550

MB/s

10G Ethernet10G Ethernet 10 Gbps10 Gbps

USB 1.0USB 1.0 1.5 MB/s1.5 MB/s

USB 2.0USB 2.0 60 MB/s60 MB/s

DDR2-667 RAMDDR2-667 RAM 5.3 GB/s5.3 GB/s

DDR4-3200 RAMDDR4-3200 RAM 90

GB/s90

GB/s
L2

cache (8 core)L2

cache (8 core) 500

GB/s500

GB/s

L1

cache (8 core)L1

cache (8 core) 1.5

TB/s1.5

TB/s

100G Ethernet100G Ethernet 100 Gbps100 Gbps

USB 3.0USB 3.0 600 MB/s600 MB/s

m.2 PCIe 5.0 drivem.2 PCIe 5.0 drive 14 GB/s14 GB/s

5

•

OS also allows certain IPC to be modeled as
communication with an abstract I/O device
━

Example: inter-process pipes, mailslots, network sockets
━

This explains why ReadFile is so universal
•

Our main focus here is on file I/O, but similar
principles apply to other types of devices
━

Just reading files is simple; however, achieving decent
speed and parallelizing computation is more challenging

•

Before solving this problem, we start with a general
background on files and APIs
━

Homework #3 requires multi-CPU searching of Wikipedia for
user-specified substrings

I/O DevicesI/O DevicesI/O Devices

6

•

Just like RAM, a file is a sequence of bytes
•

Supports 3 main operations: read, write, and seek

•

File pointer specifies the current position within the file
━

Read/write operations proceed from that location forward
•

Example: test.txt written in notepad:

━

Byte contents give by hex viewer (e.g., HxD)

•

What is the ASCII table?
━

Why is there 0xD and 0xA in the file?

Background on FilesBackground on FilesBackground on Files

This is a text file.
 Second line.

54 68 69 73 20 69 73 20 61 20 74 65 78 74 20 66
69 6C 65 2E 0D 0A 53 65 63 6F 6E 64 20 6C 69 6E
65 2E

This is a text f
ile...Second lin
e.

7

•

Two modes

of file I/O: text

and binary
━

Must be requested when you open the file
•

Binary

means disk contents are an exact copy of the

RAM buffer that is written and vice versa
•

Text

means there is some library

(wrapper) between

the application and OS that applies certain translation
before your program sees the data
━

For fopen/fprintf, this involves \r\n  \n, terminating the read
at Ctrl-Z markers (ASCII code 26), and certain multi-byte to
wide char mapping based on the locale

•

Note: text files can be always read in binary mode,
while the opposite is not true

Background on FilesBackground on FilesBackground on Files

8

•

Example: binary mode

reads the file as is:

━

while text mode

removes \r

•

If the file is tweaked before it reaches your program,
lots of confusing things may happen
━

E.g., file size 100,050 bytes, but your buffer gets only 99,800
•

Since text-mode processing does usually unwanted
things to the file and is much slower than binary mode,
it is not recommended (see later for benchmarks)

Background on FilesBackground on FilesBackground on Files

54 68 69 73 20 69 73 20 61 20 74 65 78 74 20 66
69 6C 65 2E 0A 53 65 63 6F 6E 64 20 6C 69 6E 65
2E

This is a text file.
 Second line.

54 68 69 73 20 69 73 20 61 20 74 65 78 74 20 66
69 6C 65 2E 0D 0A 53 65 63 6F 6E 64 20 6C 69 6E
65 2E

9

•

Number representation

can be ASCII

or native
━

ASCII is human-readable form (e.g., printf (“%d”, x))
━

Native is identical to how numbers are stored in RAM
•

Example:

•

ASCII output depends on how the numbers are written
(e.g., decimal, hex) and the separator between them
━

Conversion to/from ASCII is usually slow
━

Format inefficient in terms of storage
•

APIs that read raw buffers are native
━

Those that attempt to read individual variables are ASCII

Background on FilesBackground on FilesBackground on Files

int x = 0x11223344;int x = 0x11223344;

44 33 22 11 native version

32 38 37 34 35 34 30 32 30

decimal ASCII version of x, i.e., string “287454020”

10

•

Suppose we read an
integer natively from the beginning of this file

━

What is the value of x?
━

Equivalent versions 
•

How to write contents of some class natively to disk?
━

If it has no pointers, then it’s trivial

Background on FilesBackground on FilesBackground on Files This is a text file.
 Second line.

int x;
ReadFile (&x, sizeof(int));
int x;
ReadFile (&x, sizeof(int));

char buf[] = “This”;
int x = *(int*) buf;
char buf[] = “This”;
int x = *(int*) buf;

class MyClass {
double a;
uint64 b;

};

MyClass mc;
mc.a = 3.1415;
mc.b = 0x55;
WriteFile (…, &mc, sizeof(MyClass), …);

class MyClass {
double a;
uint64 b;

};

MyClass mc;
mc.a = 3.1415;
mc.b = 0x55;
WriteFile (…, &mc, sizeof(MyClass), …);

6F 12 83 C0 CA 21 09 40 55 00 00 00 00 00 00 00

�Notepad shows: o

ƒÀÊ!@U

int x = 0x73696854;int x = 0x73696854;

mc.a mc.b

54 68 69 73 20 69 73 20 61 20 74 65 78 74 20 66
69 6C 65 2E 0D 0A 53 65 63 6F 6E 64 20 6C 69 6E
65 2E

11

•

How to store pointers, e.g., a linked list or binary tree?

•

Data structure must first be converted to an array
━

Hierarchical structure must be flattened

Background on FilesBackground on FilesBackground on Files

class LinkedListElem {
int val;
LinkedListElem *next;

};

class LinkedListElem {
int val;
LinkedListElem *next;

};

class TreeElem {
int val;
TreeElem *left, *right;

};

class TreeElem {
int val;
TreeElem *left, *right;

};

int valArray = new int [LinkedList.size()];

// traverse the list, copy into valArray
WriteFile (…, valArray,

sizeof(int) * LinkedList.size(), …);

int valArray = new int [LinkedList.size()];

// traverse the list, copy into valArray
WriteFile (…, valArray,

sizeof(int) * LinkedList.size(), …);

class TreeElem2 {
int val;
int left, right; // offsets

};

TreeElem2 *arr = new
TreeElem2 [tree.size()];

class TreeElem2 {
int val;
int left, right; // offsets

};

TreeElem2 *arr = new
TreeElem2 [tree.size()];

val = 55
left = 1
right = 2

val = 55
left = 1
right = 2

val = 22
left = 3
right = 0

val = 22
left = 3
right = 0

val = 77
left = 4
right = 5

val = 77
left = 4
right = 5

val = 14
left = 0
right = 0

val = 14
left = 0
right = 0

val = 65
left = 0
right = 0

val = 65
left = 0
right = 0

val = 90
left = 0
right = 0

val = 90
left = 0
right = 0

0 1 2 3 4 5

5555

2222 7777

1414 6565 9090

12

•

In fact, trees stored as arrays in RAM are often much
faster than pointer-based trees
━

Main drawback: difficult to deal with fragmentation
•

Further compaction: 2 bits to store # of children
━

Suppose 00 = none, 01 = left, 10 = right, 11 = both

•

Conversion from random-access (RAM) structures to
sequential arrays is called serialization
━

Similar to serial transmission over COM ports or networks

Background on FilesBackground on FilesBackground on Files

val = 55
bits = 3
val = 55
bits = 3

val = 22
bits = 1
val = 22
bits = 1

val = 77
bits = 3
val = 77
bits = 3

val = 14
bits = 0
val = 14
bits = 0

val = 65
bits = 0
val = 65
bits = 0

val = 90
bits = 0
val = 90
bits = 0

0 1 2 3 4 5

5555

2222 7777

1414 6565 9090

13

•

Asking the kernel for chunk of data
━

How large should the chunk be?
•

Clearly not too small, otherwise
many kernel-mode transitions, which are costly

•

Some wrapper libraries (FILE and STL streams) have
yet another buffer to avoid kernel-mode switching
━

Also needed

if they perform
 text-mode pre-processing

•

OS buffering

can be disabled
━

Disk driver directly DMAs data into
 your program’s buffer

━

Caveat: buffer size must be a
multiple of sector size (512 bytes)

Background on FilesBackground on FilesBackground on Files program bufferprogram buffer

OS bufferOS buffer

diskdisk
DMA

memcpy

library bufferlibrary buffer

OS bufferOS buffer

diskdisk

program bufferprogram buffer

14

•

CreateFile is the most
 flexible and high-performance method of doing I/O

━

Treats

the memory as a sequence of bytes
━

Operates

in binary mode and gives you the native
representation of RAM data structures

•

Read MSDN about

access (read, write, both), sharing,
and disposition

(e.g., open

existing, create new)

•

The flag field sets the attributes (e.g., hidden,
encrypted, read-only, archived, system)
━

Also can be used to disable OS buffering
(FILE_FLAG_NO_BUFFERING) or enable overlapped
operation (FILE_FLAG_OVERLAPPED)

APIsAPIsAPIs
HANDLE WINAPI CreateFile(

__in LPCTSTR lpFileName,
__in DWORD dwDesiredAccess,
__in DWORD dwShareMode,
NULL, // security
__in DWORD dwCreationDisposition,
__in DWORD dwFlagsAndAttributes,
NULL // template

);

HANDLE WINAPI CreateFile(
__in LPCTSTR lpFileName,
__in DWORD dwDesiredAccess,
__in DWORD dwShareMode,
NULL, // security
__in DWORD dwCreationDisposition,
__in DWORD dwFlagsAndAttributes,
NULL // template

);

15

•

Some

functions take
 two DWORDs instead

of one uint64
━

How to convert?

•

Overlapped I/O allows multiple outstanding requests

APIsAPIsAPIs
char buf [BUF_SIZE];
DWORD bytes;

// read a whole chunk
if (ReadFile (hFile, buf, BUF_SIZE,

&bytes, NULL) == 0) {
if (GetLastError () != ERROR_HANDLE_EOF) {

// handle error
exit (-1);

}
reachedEof = true;

}
else if (bytes < BUF_SIZE)

reachedEof = true;

printf (“Obtained %d bytes, EOF = %d\n”,
bytes, reachedEof);

char buf [BUF_SIZE];
DWORD bytes;

// read a whole chunk
if (ReadFile (hFile, buf, BUF_SIZE,

&bytes, NULL) == 0) {
if (GetLastError () != ERROR_HANDLE_EOF) {

// handle error
exit (-1);

}
reachedEof = true;

}
else if (bytes < BUF_SIZE)

reachedEof = true;

printf (“Obtained %d bytes, EOF = %d\n”,
bytes, reachedEof);

DWORD low = GetFileSize(HANDLE hFile,
LPDWORD high);

DWORD low = GetFileSize(HANDLE hFile,
LPDWORD high);

DWORD WINAPI SetFilePointer(
__in HANDLE hFile,
__in LONG lDistanceToMove,
__inout_opt PLONG lpDistanceToMoveHigh,
__in DWORD dwMoveMethod);

DWORD WINAPI SetFilePointer(
__in HANDLE hFile,
__in LONG lDistanceToMove,
__inout_opt PLONG lpDistanceToMoveHigh,
__in DWORD dwMoveMethod);

// combining DWORDs into uint64
DWORD high, low = GetFileSize (h, &high);
uint64 size = ((uint64)high << 32) + low;

// splitting a uint64 into DWORDs
high = size >> 32;
low = size & ((DWORD) –1);

// combining DWORDs into uint64
DWORD high, low = GetFileSize (h, &high);
uint64 size = ((uint64)high << 32) + low;

// splitting a uint64 into DWORDs
high = size >> 32;
low = size & ((DWORD) –1);

OVERLAPPED ol;
memset (&ol, 0, sizeof (OVERLAPPED));
ol.hEvent = CreateEvent (NULL, false, false, NULL);
ReadFile (hFile, buf, len, NULL, &ol);
// if error == ERROR_IO_PENDING, continue
WaitForSingleObject (ol.hEvent, INFINITE);
GetOverlappedResult (hFile, &ol, &bytesRead, false);

OVERLAPPED ol;
memset (&ol, 0, sizeof (OVERLAPPED));
ol.hEvent = CreateEvent (NULL, false, false, NULL);
ReadFile (hFile, buf, len, NULL, &ol);
// if error == ERROR_IO_PENDING, continue
WaitForSingleObject (ol.hEvent, INFINITE);
GetOverlappedResult (hFile, &ol, &bytesRead, false);

Note: each pending
request must have

its own struct ol

16

•

The FILE stream is the classical C-style library
━

Portable to Unix and most other OSes

APIsAPIsAPIs
FILE *fopen (const char *filename,

const char *mode);
size_t fread (void *buffer, size_t size,

size_t count, FILE *stream);

FILE *fopen (const char *filename,
const char *mode);

size_t fread (void *buffer, size_t size,
size_t count, FILE *stream);

char buf [BUF_SIZE];

// open for reading in binary mode
FILE *f = fopen (“test.txt”, “rb”);
if (f == NULL) {

printf (“Error %d opening file\n”,
errno);

exit (-1);
}
// read up to one full buffer
// native representation
int bytesRead = fread (buf, 1, BUF_SIZE, f);
fclose (f);

char buf [BUF_SIZE];

// open for reading in binary mode
FILE *f = fopen (“test.txt”, “rb”);
if (f == NULL) {

printf (“Error %d opening file\n”,
errno);

exit (-1);
}
// read up to one full buffer
// native representation
int bytesRead = fread (buf, 1, BUF_SIZE, f);
fclose (f);

int a = 5;
double b = 10;

// open for writing in binary mode
FILE *f = fopen (“test.txt”, “wb”);
// ASCII representation
fprintf (f, “a = %d, b = %f\n”, a, b);
fclose (f);

int a = 5;
double b = 10;

// open for writing in binary mode
FILE *f = fopen (“test.txt”, “wb”);
// ASCII representation
fprintf (f, “a = %d, b = %f\n”, a, b);
fclose (f);

FILE *f = fopen (“test.txt”, “rb”);
// seek to the end
_fseeki64 (f, 0, SEEK_END);
// get current position
uint64 fileSize = _ftelli64(f);
// return to beginning
_fseeki64 (f, 0, SEEK_SET);

printf (“file size %llu\n”, fileSize);

FILE *f = fopen (“test.txt”, “rb”);
// seek to the end
_fseeki64 (f, 0, SEEK_END);
// get current position
uint64 fileSize = _ftelli64(f);
// return to beginning
_fseeki64 (f, 0, SEEK_SET);

printf (“file size %llu\n”, fileSize);

int a;
double b;
// ASCII decoding of numbers
int ret = fscanf (f, “%d %f”, &a, &b);
if (ret == 0 || ret == EOF)

printf (“Hit error or EOF\n”);
else

printf (“Obtained %d, %f\n”, a, b);

// %s gets one word and NULL terminates it
// note: potential buffer overflow
fscanf (f, “%s”, buf);
// recommended to specify buf length
fscanf (f, “%32s”, buf);

int a;
double b;
// ASCII decoding of numbers
int ret = fscanf (f, “%d %f”, &a, &b);
if (ret == 0 || ret == EOF)

printf (“Hit error or EOF\n”);
else

printf (“Obtained %d, %f\n”, a, b);

// %s gets one word and NULL terminates it
// note: potential buffer overflow
fscanf (f, “%s”, buf);
// recommended to specify buf length
fscanf (f, “%32s”, buf);

17

•

If an entire line is needed,
a faster alternative to
fscanf

is

fgets()

•

STL streams are similar

APIsAPIsAPIs

char buf [BUF_SIZE];

FILE *f = fopen (“test.txt”, “rb”);

while (!feof (f)) {
// read one line at a time
if (fgets (buf, BUF_SIZE, f) == NULL)

break; // EOF or error
printf (“Line ‘%s’ has %d bytes\n”,

buf, strlen(buf));
}
fclose (f);

char buf [BUF_SIZE];

FILE *f = fopen (“test.txt”, “rb”);

while (!feof (f)) {
// read one line at a time
if (fgets (buf, BUF_SIZE, f) == NULL)

break; // EOF or error
printf (“Line ‘%s’ has %d bytes\n”,

buf, strlen(buf));
}
fclose (f);ifstream ifs;

// binary mode open
ifs.open (filename, ios::binary);
while (ifs) { // not EOF?

// native read
ifs.read (buf, BUF_SIZE);
printf (“Read %d bytes\n”,

ifs.gcount());
printf (“Position in file %d\n”,

ifs.tellg());
}
// now try ASCII read
int x;
ifs >> x; // attempts to read an int
string s;
ifs >> s; // reads the next word
// read one line up to some delimiter
getline (ifs, s, ‘\n’);

ifstream ifs;

// binary mode open
ifs.open (filename, ios::binary);
while (ifs) { // not EOF?

// native read
ifs.read (buf, BUF_SIZE);
printf (“Read %d bytes\n”,

ifs.gcount());
printf (“Position in file %d\n”,

ifs.tellg());
}
// now try ASCII read
int x;
ifs >> x; // attempts to read an int
string s;
ifs >> s; // reads the next word
// read one line up to some delimiter
getline (ifs, s, ‘\n’);

•

Q: using Windows APIs,
how to print contents of
a text file?

// assume file is small and fits in RAM
// allocate the buffer
char *buf = new char [fileSize + 1];
ReadFile (..., buf, fileSize, &bytes, ...);

// TODO: error checks

buf[bytes] = NULL;
printf (“%s\n”, buf);

// assume file is small and fits in RAM
// allocate the buffer
char *buf = new char [fileSize + 1];
ReadFile (..., buf, fileSize, &bytes, ...);

// TODO: error checks

buf[bytes] = NULL;
printf (“%s\n”, buf);

18

•

Dual RAID controllers, each with 12 disks in RAID-5
━

Speed given in MB/s,
CPU utilization =

 fraction of 16 cores

•

Modern PCIe 5.0 m.2 drives in RAID
━

Up to 60 GB/s

PerformancePerformancePerformance

Text modeText mode
DebugDebug ReleaseRelease

Binary modeBinary mode
DebugDebug ReleaseRelease

CPUCPU

ifs >> sifs >> s

fscanf (f, “%s”, buf)fscanf (f, “%s”, buf)

fgets (buf, BUF_SIZE, f) fgets (buf, BUF_SIZE, f)

ifs.read w/32MB buffer ifs.read w/32MB buffer

fread w/32MB bufferfread w/32MB buffer

ReadFile w/32MB bufferReadFile w/32MB buffer

ReadFile + no OS bufferingReadFile + no OS buffering

ReadFile + no buf + overlappedReadFile + no buf + overlapped

1.81.8 1212 1.81.8 1313

66 1919 7.57.5 1919

2626 5050 3939 7979

9090 360360

9090 144144 503503 650650

982982

19231923

25002500

10%10%

9%9%

7%7%

10%10%

9%9%

11%11%

10%10%

11%11%

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Chapter 11: Roadmap
	I/O Devices
	I/O Devices
	I/O Devices
	Background on Files
	Background on Files
	Background on Files
	Background on Files
	Background on Files
	Background on Files
	Background on Files
	Background on Files
	APIs
	APIs
	APIs
	APIs
	Performance

